
Chapter 4 contains a detailed study of Jackson queuing networks
W?
“<m
P-

with single server nodes. The operating characteristics studied
WY
!l-
r“17

include equilibrium

equilibrium traffic

Chapter 5 uses

fications that take

are simplifications

KS
line sizes, service obtained by customers and

processes on the arcs.

results in Chapter 4 to exemplify various simpli-

Jackson networks into Jackson networks. Considered

that eliminate feedback arcs or remove arcs within

a subnetwork, and some simplifications that lump a subnetwork into a

single node. The first type of simplificationsmakes a combined use of

DEVS-theoretic results derived in Chapter 1 as well as the statistical-

theoretic treatment of Chapters 2 and 3. Finally, simulation complex-

ities of Jackson networks are discussed, and their behavior under

various simplifications is investigated.

Chapters 1-5 are followed by a Conclusion that summarizes the

results attained in them and suggests a number of research topics to

be pursued.

The third part consists of Appendices A, B and C, which provide

mainly background material.

from

Appendix A contains a digest of elementary System Theory compiled

[Zl], and which serves as an introduction to Chapter 1.

Appendix B proposes a conceptual framework for Simplifications

which is in line with Zeigler’s paradigm, and into which large tracts

of this dissertation are fitted. It provides a common foundation for

a variety of simplificationproblems arising in applied areas such as

Modeling and Simulation as well as in theoretical contexts. The central

view, expounded by it, is that morphic relations among systems constitute
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a major ,mathematicalvehicle for formalizing the intuitive simplifi-

cation notion.

Appendix C is a collection of definitions and facts from the

domain of

tions for

0.3 Some

Stochastic Processes. It provides some mathematical founda-

1
the methods employed in Chapter 4.

R

Notational Conventions i

Each chapter or appendix in this dissertation is divided into

sections. Section m of chapter or appendix n is numbered according
I

to the scheme n.m. Theorems, lemmas, corollaries etc. within each
I

section n.m are numbered according to the scheme n.m.l and delimited

by the symbol Cl. Lines are usually tagged by numbers although upper B

case and lower case letters as well as Latin numerals are occasionally

I
used. References to a line tag made within the scope of a theorem,

lemma, corollary etc. are always local, unless otherwise specified.
I

References to a line tag, made outside the above, are always local

to the section of occurrence, unless otherwise specified. 8

The symbol
A
= means equality by definition. The symbol Pr is an

abbreviation for probability, and E - for expectation.
D

In referencing bibliographic material we occasionally abbreviate
i.

the word Chapter as Ch. and the word Section as Sec.

s

II



CHAPTER 1

DETERMINISTIC DISCRETE EVENT SYSTEMS

1.0 Introduction

Discrete event systems are characterized by the fact that they

evolve in continuous time

discretely in time. Such

going state “jtips”; they

separating them. Loosely

out step functions.

but change state due to events occurring

systems respond to discrete stimuli by under-

remain quiescent during the time intervals

speaking, their state trajectories trace

The importance of discrete event systems stems from the fact

that they model a variety of real life systems such as software

systems, information processing systems, production processes, traffic

systems, service facilities -
,.

in particular queuing systems - and

certain aspects of biological and physical phenomena ‘(seee.g. [Z8]

and

that

[GZ1]).

Our interest in

queuing systems

discrete event

can be modeled

systems is motivated by the fact

as stochastic discrete event

ministic discrete event systems.

deterministic systems) alludes to

systems, while particular queuing histories are modellable as deter-

The term stochastic systems (versus

the fact that the operation of the

later is governed

random variables.

This chapter

by ordinary functions, and that of the former by

studies the logic of deterministic discrete event

systems and certain preservation relations among them, which are

collectively called morphisms. .

The applications to queuing systems are twofold. First, to

9
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describe accurately their operation (see Chapter 2), and second, to

perform simplifications on them (see Chapters 3 and 5).

The formalization of discrete event systems by the DEVS (discrete

event system specification) concept

Ch. IX Sec. 9.11). This definition

is due to B. P. Zeigler (see [Zl]

is used here with minor changes

as the starting point, and the treatment of morphic relations follows

in spirit that of [Zl] and especially Chapters IX and X.

The organization of this chapter is as follows. Sections 1.1 -

1.2 present a hierarchy of deterministic discrete event systems and

related structures, which is based on [Zl] Ch. IX, mainly Sec. 9.11.

Sections 1.3 - 1.5 present a hierarchy of morphisms and investigate

some of their properties. Finally, Sections 1.6 - 1.7 describe opera-

tions on discrete event systems and investigate morphic relations

among triples of discrete event systems.

The reader is referred to Appendix A and to [Zl] for additional

background.

1.1 The DEVS and DEVN Concepts

A DEVS (discrete event system) specification is a special case of

an iterative specification of a system, which is itself a special case

of the class of time invariant mathematical systems (see Appendix A).

By “special caseI!we mean here that the specialized case induces an

instance of the generalized case in a one-one manner.

The salient feature of DEVSS is that they operate in continuous

time, but significant state changes occur discretely in time. These

changes (or jumps) are caused by discrete occurrence of “events”.

,B



11 c=
:Z
e?
t-
:W

Consequently, the evolution of a DEVS can be described by a step
<m
<-
W-
?-l-

function.
h-

IT

!%

The definition of a DEVS follows that of [Zl], (see Ch. IX

Sec. 9.11) with rather minor deviations.

Definition 1.1.1

A DEVS (discrete event system) specification is a structure

M= (X,S,Y,*,6,A)where

X is the external event set

S is the sequential state set

Y is the output value set

% is the time advance function

6 is the sequential state transition function

A is the output function

subject to the following restrictions:

a) * is a function %:S+[O,m].

~(s) is the maximal time the system is allowed to stay in

sequential state s. This maximum is attained whenever no

external events

state s.

b) 6 is a function

occur while the system is in sequential

~:Qx(xu{$})-L-.swhere

+~X is the external nonevent symbol and

Q~ {(s,e): s~S and O <e < k(s)} is the full state set ofM.

A full state q is a pair (s,e) interpreted as a sequential

state s, and the time elapsed e in that state. The e compo-

nent will be referred to as the cZock,

The definition of 6 has two parts.
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8

A~M((s,e),x)b.1) VqEQ,Vx CX, d(q,x) -

where dM((s,e),x) gives the sequential state to which

the system transits from the full state q, under the

external event x.

b.2) Vq&Q, ~(q,+) ~do(s)

where d is the autonomous transition function of the
+

system. Such transitions occur whenever the clock

exceeds %(s).

c) A is a function A:Q-Y.

A(q) is the instantaneous output of the system from full

state q = (s,e).
•1

Definition 1.1.2

8

R

ADEVSfi= (~,~,Y,~,$,~) is asub-DEVSofa DEVSM= (X,S,Y,S,6,A)

if

a) icx

R

where a vertical bar designates restriction of a function domain.
❑ I

Some heuristic remarks concerning the intuitive operating conven-
.1”

tions of DEVSS are warranted at this point.

The transition function 6 describes a discrete transition struc- R

ture which is essentially that of a sequential machine, while the time

1
advance function % describes the continuous time component superimposed

9
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on it. Consequently the state of a DEVS has a discrete as well as
<m
46
w-
*T

a continuous flavor; its sequential state component changes discretely
W-
r~
Cs

in time, while the clock component changes continuously in time. A

change of the sequential state will be referred to as a jump of the

system. A DEVS remains in a fixed sequential state s between jumps,

whereas the clock e increases from O to +(s), thus timing the elapsed

time since the last jump to s. Sequential state transitions (jumps)

take place from a full state q = (sje) as a result of either of the

following events.

I)

11)

III)

An “internal” event occurred dueto the fact that the

clock value e has reached the value %(s).

If no external event has occurred at that very instant, the

system will undergo an

(64(s),0). That is, a

and the clock is reset

An external event xeX

instantaneous transition to full state

jump will take place according to 6
$

to zero.

has

scheduled to take place at

The system will undergo an

occurred but no internal event is

the same instant.

instantaneous transition to full

state (6M((s,e),x),0). That is, a jump will take place

according to 6M and the clock is reset to zero.

An internal event and

-t
at the same instant.

In this case the user

specifies the jump to

an external event are scheduled to occur

should devise a tie-breaking rule that

be taken by the system, due to the two

‘Unlike [Zl] Ch. IX Sec. 9.13,we do not assume that internal
events have priority over external ones.



14 R
imminent events above. For example, one can have a 6

$ B
jump preempt a 15Mjump or vice versa. One can also have any

combination of 6 and 6M jumps ranging from simple composi-
$ R

tion of 6$ and 6M to any arbitrary function of 6
@
and 6M.

For our purposes, it is convenient to choose a composition rule R

for a tie-breaking rule. This is the most natural rule for a wide
I

variety of applications, and queuing theoretic ones in particular. It

also enjoys the advantage of being robust with respect to the morphism R

concept to be defined later. This fact will allow us to disregard

the special case of double scheduling in the impending study of morphic R

relations among deterministic DEVSS.
1

Simultaneous events and tie-breaking rules are vital in simulation

of stochastic systems, especially when the time base has a minimal reso- 1

lution. In theoretical applications simultaneous events typically occur

1with zero probability.

The mode of operation of DEVSS requires that all jumps are instan-
1

taneous and always reset the clock to zero, whereby the timing process

starts all over again till the next jump. The mathematical operating I

conventions are embedded in the discrete event structures induced by a

DEVS, to be discussed in the next section. Typically, the duration *(s) R

that the system is allowed to stay in sequential state seS, will appear
I

as a component of s.

Definition 1.1.3

A DEVS M = (X,S,Y,%,6,A> is said to be in

structured set and every se S has the form s =

expZic<t form if S is a

(C,r) such that %(s) = r. R
> •1

9

R



Explicit form DEVSS are handy to work with, as the residual time to
{e
4m
“-
w-

the next autonomous transition from full state q = ((&,r),e) is r - e. mm
rr

We now introduce the concept of state-DEVS and its behavioral

frames in the spirit of Appendix A.

Definition 1.1.4

A state-DEVS M = (X,S,0,%,8,0) is a DEVS with unspecified output

value set Y and output function A. •1

Definition 1.1.5

Abehavio~aZ fzwne of a state-DEVS M = (X,S,0,%,6,*) is a struc-

ture $ = (Y,A) where the symbols in the angular brackets have the same

meaning and constraints as in Definition 1.1.1. •1

We will regard a state-DEVS as a representative of the class of

all DEVSS with the same underlying state structure. As a matter of

fact we refer to it interchangeably as DEVS or state-DEVS whenever the

context is clear.

Sequential states are classified as follows.

Definition 1.1.6

Let M = (X,S,Y,$,6,A)be a DEVS. Let sGS be any sequential state.

Then

a) s is called transitory if k(s) = O

b) s is called passive if %(s) = m

c) s is called reguZa? if O < %(s) s m
•1
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A transitory state is an intermediate state which the system

I

enters, and from which it departs instantly. Such states are extremely

important in describing DEVS transitions under composition type tie- 1

breaking rules that are incurred by simultaneous events. A passive

I
state, on the other hand, can change only due to an external event.

Exam~le 1.1.1

To illustrate how the DEVS concept may be used to

life descrete event systems, we now model a particular

of a FIFO (first in first out) queue, with one server,

behavioral frame is the stream of departing customers.

8

describe real ~

queuing history

where the

Let C = {cil~=~ be a set of customer tags where Ci tags the i-th

service times obtainedcustomer served. Let {Sn}~=l be the sequence of

by the customers, from the server. The modeling

is defined in explicit form as follows.

B
DEVS M = (X,S,y,*,6,a) I

a) X = {1. : C:e C} where la codes the arrival of customer c;.
L. L.

1“ 1
-L

b) S= {(A,n,@): neN}U{(y,n,r): yeC+, neN, O <r < Sn} B

where A is the empty string, C+ is the set of all finite
I

nonempty strings over C, and N is the set of natural numbers.

c) Y = {O,lc : cieC} where lC codes the departure of customer I
i i

ci and O codes a nondeparture.
I

d) $:S--+(O,W] is defined by t(y,n,r) = r

Be) 6:Qx(xu{$})--=-s is defined by
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{’
(Ci,n,Sn), ify = A

e.1) 6M(((y,n,r)je)Jlc ) =
i

(ciy,n,r-e), ifyGC+

{

(A,n+l,m), if len(y) = 1
e.2) ~O(yjn)r) =

(p,n+l,sn+l), if y = pcj and len(y) > 1

where len(y) is the length of the string y.

f) A:Q*Y is defined by

[

lC , ife =0, n>l, r=morr =Sn
A((y,n,r),e) = n-1

(O, otherwise

To describe a queuing history, one chooses an “initial state”

‘o = (y,n,r)where

{

(A,l,m), ify=A

‘o =
(CLCk-lOOOC1,l,S1), if y # A

Note that external events model arrivals and internal events model

service completions.

In any sequential state s = (y,n,r), Y is the line configuration,

n is the index of the customer in service or to be served, and r is the

residual service time. In particular s = (A,n,m) is a passive state

since an empty queue can have a jump only due to an arrival of a

customer.

For double scheduling (simultaneousarrival and service completion)

the tie-breaking rule is 6 06
Mo”

Other examples may be found in [Zl] Ch. IX Sec. 9.12.

❑



Next, we introduce a formalism for describing discrete event

networks composed of DEVS components.

Definition 1.1.7

A DEW? (discrete event network) specification is a structure

D is a set of

{Ma}a~D is a

{IalaCD is a

influenced by

component indices called the {ndex se-t.

set of state-DEVSs called the component set.

family of subsets of D that specify the components

each component of the network. Ia is called the

influence set of a.

{z
a$&D

is a family of maps that determine the effect of a

~f21
a

component on those components it influences in the network.

B

z is called the effect function of a on B.
a9B

‘Ja}aG D
is a family of functions that specify the jump taken by .B

a component due to scheduling of an event or simultaneous events.
1

Ja is called the jump function of a.

The above are subject to the following restrictions:

a) each state-DEVS Ma = <Xa,Sa,*,ta,da,O), aeD, is in explicit
I

form.

b) for any UED and B~I
a’ ‘a,$

-t’
is a partial map Z~ &&-x

> 6“

t a partial map is allowed to be undefined on a subset of its 9
domain.



c)

~a = XaU{$a} and ~aA?Xa codes an internal event in Ma.

Furthermore J~ is constrained by

I

(sa,$%%)’ ifEa = {+al

6~,M(((Ea,ra),e),xa), ifEa = {xa},

Ja(((Ea,ra)~e))Ea) = Xaex
cl

,1(ta,ra-e), ifE = @a

(E;,r~), otherwise ❑

To describe the operation of a DEVN N, we associate with it a

state-DEVS ~ = (~,SN, *,*N,6N,0) defined by

“xN=a~D ‘a-{$a}a~D

‘N ‘
s

a~D a

%N:SN-(O,@] is defined by %N({(Ca,ra)}aED) = ~$g{ra}

6N:QNxXN-SN is determined by the following procedure.

Take any ((S,e),~) = (({(ga,ra)}a&D>e)$ {X~laeD)~QNxXN

Define a family of event sets {Ea}aeD as follows:

If an external event ~cXN is scheduled,then for any a~D

( {Xal , if xa + $a

1. set Ea =

\ “
@ ~ otherwise

‘We point out that unlike [Zl] Ch. IX Sec. 9.17,
rule does not select a component to be activated but

the tie-breaking
is embedded in
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If an internal event $ is scheduled in at least one component
a D

before the occurrence of an external event, from sequential state

s es~, then let IMM(s) ~ {aED: r = *N(s)} be the set of imminent
u I

components (i.e. those scheduled to undergo an autonomous jump

r
simultaneously).

Next, for any QCD

2. whenever uEIMM(s), put @a in Ea

and

3. whenever a CI ~ for some 13EIMM(s), put Z@ ~(sP)~Xa in E
D u“

4. Finally, compute Ja(((Ca,ra),e),Ea) for each aeD.

The transition function dN is then defined in terms of the I

9

Notice that the symbol $a is interpreted in N as a nonevent, while “1

in E it stands for an internal event in component a.
a

Definition 1.1.8

Let N be a DEVN and let K be the state-DEVS associated with it.

A pair $ = (Y,~) is called a behavioral fzwme of N if it ii a
I

behavioral frame of
%“ D

Intuitively, a DEVN is composed of a set of DEVSS operating 9

concurrently and interactively. The influence functions describe the

topology of the network in terms of influence relations. The residual B

time to next jump is the infimum of the residual times of all compo-
1

nents. A jump occurs whenever one or more components are activated

9
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by events in En.
<a

These may be external to components or internal to <m
P“.

them. The external

events generated by

symbolized in Ea by

FT.

ones are due either to environment stimuli or to
v-
rT.
r%

influencers of components. The internal events,

$a, trigger autonomous transitions prompted by a

clock reading of e = ta(Ea,ra) in Ma. The jump function Ja takes all

these events into account when determining the jump from state

((Ea,ra),e),by means of some tie-breaking rule. In most cases,

including queuing situations, Ja reduces to a composition rule

that applies da M and 6 sequentially in some order, according to
J a,1$

the events in Ea. In this case Ea must be finite, in order that Ja

be well-defined. This always happens in a DEVN with a finite index

set D. In statistical-theoreticcontexts multiple scheduling

(i.e. lEal > 1)+ occurs in most cases with probability zero anyway.

Examnle 1.1.2

To illustrate the use of a DEVN model consider a network of

finitely many queues in tandem where each single queue is as in Example

1.1.1 (refer to Figure 1.1.1). The DEVN model is

where

a) D = {1,2,...m}

b) Ma = {Xu,Sa,*,%a,da,●), is the DEVS modeling the a-th queue.

+I.I is the cardinality symbol.
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Figure 1.1.1: A Sequence of Queues in Tandem.
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r-
;*
<,0

It is defined as in Example 1.1.1 except that
-—.. . <Se

b-
Iw”

Xa = {lc :C 6Ca}, where C = (c }: is the seta,i a
a,i

a,i 1=1

of customers whose first service occurred in M~, and {s }@
a,n n=l

is the sequence of services awarded at Ma:

{

{a+ 1}, if 1 Sa < m
c) Ia =

@,ifa=m

{

1 if Ca = (y,n,r) wherey = pcB i
Cfl,i’ 9

d) Za,6(Ca,ra) =

undefined, otherwise

e) For each aGD, the event sets Ea have the form:

Ja(((Ga,ra),e),E~) ‘.<

Notice that in our

service completions and

u

[

(~a,ra-e), ifEa = O

d
a,M((6a,$(Ca,ra),o),l

), ifEa=
c~,i

{Oa,lc I
$,i

DEVN, internal events (denoted ~a) represent

subsequent departures. External events

(denoted lC ) represent customer arrivals. “For a = 1 these are
a,i

arrivals from an external source only, while for 1 c a s m the arrivals

originate from an external source or from component a - 1. The tie-

breaking rule for multiply scheduled events in a component, is a compo-

sition whereby departures precede arrivals.
•1
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1.2 Discrete Event Structures Induced by a DEVS

i
In order to gain a precise understanding of the operating conven-

tions of DEVSS and their behavior under complex input segments, we need B

to translate the DEVS structure into the iterative specification and

the mathematical system induced by it. We follow the procedure in I

[Zl] Ch. IXSec. 9.13, with minor changes.
1’

In the following definitions N denotes the set of natural numbers.

9
Definition 1.2.1

The extended

M= (X,S,Y,%,6,A)

by

T$(s,o) ~ s

autonomous transition funct<on of a DINS t

is a function %$:SX(NU{O})+S defined recursively
i

~$(s,n) gives the sequential state

after n jumps under a sufficiently long

Definition 1.2.2

•1

reached autonomously from s I

nonevent segment.

.1

The total time advance function of a DEVS M = (X,S,Y,S,6,A) is the

function cs:SX(NU{O})~[O,m] defined by 8

(o, ifn=O

El



u(s,n) gives the total time it takes the system to evolve
P-
:W
is+
<m

autonomously from state (s,0) to state (~ (s,n),O) i.e. the total l.-
$ FT

“-

time spanning n jumps from state (s,0).
rv

c%

Definition 1.2.3

The ~ump counts function of a DEVS M = {X,S,Y,g,6,A) is a func-

tion m:QXIO,~]-N U{O}U{m} defined by

A
m((s,e),~) = sup{n: u(s,n) S e + ~] o

m((s,e),T) gives the number of jumps taken by the system when

evolving autonomously from state (sje) for T time units.

We are now ready to define the iterative specification induced

by a DEVS. The input segment generators will be functions u of the

form u:(O,T]-+XU{$} such that either

A

{

+, ifo<t<T
a) u = XT where x~(t) =

x, ift=T

or

b) u = $T where $T(t) : $ , tE(o, T].

Definition 1.2.4

The iterative specification induced by a DEVS M = (X,S,Y,~,6,A)

is G(M) = (T,XG,QG,Q,Y,6G,A) where

A
a) T = [O,m)

b) XG
A
= Xu{+}

c) ~ OXUQ
A

‘G 4’
where

‘x
= {XT: -r> O} and Q

‘$
: {$T: T>()}

d) Q~ {(s,e): s6S, 05e<*(s)l
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8

e) 6G:QXnG-DQ is defined recursively by

V(s,e)CQ, VxeX and VT > 0

(
(s,e+~), ife+~<k (s) E

A
e.1) dG((s,e),$T) =

{

(F$(s,m((s,e),~)), if e + -r= t(s)

L~G((d$(s) ’O)’+e+~-&(s))’ ‘f e+T > ‘[s)
e.2) dG((s,e),xT) ~ (6M(rSG((s,e),$T),x),0) B

An iterative specification G(M) thus derived is called a dLscrete E

event iterative

Comment 1.2.1

The symbol

specification [abbreviatedDEIS).
c1

1

i

$0 denotes the empty function and is not a generator.

However, for notational convenience we shall occasionally use in this 1

chapter the notation ~G((s,e),$O) ~ (s,e). a
I

Since 6G in Definition 1.2.4 has a recursive definition, we m

need to determine the conditions that render it a well-defined func-

tion. Clearly, this happens iff the DEIS G(M) has a finite number of
s

jumps when started from any state (s,e) under any input segment.

Now, recall that a jump occurs either under an external event

x~X according to 6M, or autonomously according to 6
$“

Since input B

segments are composed of generators, they give rise to at most one

m
jump according to 6M. It remains to ensure that jumps according to d

4

are also finitely many.

Formally we have

E
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H
Theorem 1.2.1

A DEIS G(M) is well defined iff the inducing DEVS M is legitimate.

I

Proof

1 See [Zl] Ch. IX Sec. 9.11. c1

“~
For a legitimate DEVS M, the autonomous part of the transition

1
function of G(M) may be specified explicitly as follows.

Lemma 1.2.1

a IfG(M) = (T,XG,!dG,Q,Y,6G,A} is a DEIS induced by a legitimate

DEVS M = (X,S,Y,*,6,A),then

V(s,e)e Q, VT > 0 ,

6(J((s>e)S$T)= (~$(s,m((s,e),~)),e + T - u(s,m((s,e),~)) .

B Proof

See [Zl] Ch. IX Sec. 9.13. •1

a

I

Legitimacy of DEVSS is equivalently formulated as follows.

I Lemma 1.2.2

A DEVS M = (X,S,Y,*,6,A) is legitimate iff VSES, u(s,n)n~-~ .

5
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Proof

Q

See [Zl] Ch. IX Sec. 9.13. •1

A special case of illegitimacy may be caused by the class of ..

transitory sequential states (recall that s6S is transitory if 1

%(s) = 0). A DEVS can never remain in a transitory state for a time
i

interval of positive length, as the 6~ function is invoked immediately

on entering such states. We see that a legitimate DEVS M cannot have s

a sequential state s such that ~ (sjn) is a transitory sequential state
$

for every n 2 0. 1

Notice also, that transitory full states never appear in G(M) as
9

the outcome of an application of its transition function,

can practically be eliminated from the state set of G(M).

In order to complete our hierarchy of discrete event

only remains to introduce the mathematical system induced

mate DEVS.

Definition 1.2.6

so that they

systems, it

by a legiti-

1

The mathematical system induced by a legitimate DEVS ..

M= (x,s,Y,%,6,A) is the time invariant system SG[M)= (T,XG,~~,Q,y,~GSA) 1

induced by the DEIS G(M) =( T,XG,S2G,Q,Y,6G,A) according to Theorem
D

A.2.1 in

discrete

Our

Appendix A. A mathematical system thus derived is called a

event mathematical system (abbreviatedDEMS). c1 m

main interest in a DEMS S lies in the state and output 1
G(M)

trajectories that it engenders (see Definition A.1.5 in Appendix A).

These concepts reflect on the mathematical operating conventions of
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discrete event systems.
e

Figure 1.2.1 depicts these conventions pictorially. It super- ZZ
<?
r-

imposes on the same time scale an input segment and the resulting state
:9
(“a
(6
m-

and output trajectories, in a DEMS S The full state trajectory VT
G(M)“ .-

m

is broken down into two component trajectories - the sequential state
c%

trajectory and the clock trajectory. The input segment is a pulse-like

function whose spikes represent external events while the sets of

constancy separating them correspond to nonevent periods. By definition

there are only finitely many

The definition of ~G in

tory is right-continuous due

spaces, the full state space

components, say the zero-one

spikes in each finite time interval.

implies that the full state trajec-
‘G(M)

to Definition 1.2.1. In terms of metric

metric is derived from those of its

T
metric on the sequential state space and

the natural metric on the elapsed time space.

This means that at jump instants the full state of the system

consists of the new sequential state and a zero clock reading. The

sequential state trajectory is a right-continuous step function, while

the elapsed time trajectory is a right-continuous jig-saw function

ascending linearly at 45°. The output trajectory records some observ-

able aspect of system behavior.

Notice that transitory states never appear in state trajectories

at the DEMS level, because they have already been removed at the DEIS

level.

t
The zero-one metric d on a set X is defined by

{

o, ifx=y
vx,y~x , d(x,y) =

1, ifx+y
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B
input x

●

o ● ● ●

●
●

●

time t

●

✎ ●

●

sequential

‘r

●

b

●

state s

clock e

*
. *

●I ●
●

● *
● .

time
0 ●

●

b
b

●

time

time

o

output y

t

Figure 1.2.1: A Typical Input Segment and the Resulting
State and Output Trajectories in a DEMS.
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1

c!%
:2!
r?

Although transitory states provide a means of describing
r-
:m.

<<c

1

WI

composition type tie-breaking rules, it is often desirable to deal with P-
w
m-

DEVSS without such states.
p“r

,1

K%

Definition 1.2.7

A DEVS M =

every s 6S is a

(X,S,Y,$,6,A) is called reguZar ifM is legitimate and

regular sequential state. n

to see that each legitimate DEVS ‘givesrise to aI It is easy

s

regular one with the same induced DEIS and DEMS.

Henceforth, we shall deal only with regular discrete event systems

I i.e. with those paradigms M-G(M)~S
G(M)

in which M is a regular DEVS.

In the forthcoming treatment, we shall usually refer to DEVSS as

B specifying a discrete event system. However, all related concepts in

1
terms of the induced DEISS and DEMSS, and especially the functions CSG

and ~
G’

will be used freely in the discussion, as if belonging to a DEVS

I rather than to its induced DEIS or DEMS. The tie-breaking rule adopted

from now on for doubly scheduled events is 8 06
M~”
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1.3 Input Matching DEIS Morphisms
D

In this section we define and investigate a class of DEIS

morphisms - the so-called input matching DEIS morphisms. Working our 1

way up from the DEIS level to the DEVS level, our eventual goal will

be to derive a DEVS morphism (in the next section), by adding a level
m

of detail to the DEIS morphism concept via input matching DEIS mor-
S

phisms.

Throughout this chapter,

Unless otherwise specified, a

the following notation will be adopted. I

reference to ‘Mmeans a DEVS

M= (X,S,Y,%,6,A) and a reference to G(M) means the DEIS
I

G(W = <T,XG,QG,Q,Y,6G,A) induced by M. A reference to M- and G(M’)

refers to a DEVS M“ = (X0,S-,y”,&”,6-,a’)and theDEIS

G(M’) = {TJ&fi&Q’sy”&~ > induced by it respectively, and

similarly for M“ and G(M”), M* and G(M*), fiand G[fi).

Whenever f is a morphism from structure S to structure S“, then

S and S“ are referred to as the morplz$c preimage and the morphic image

respectively, under f.

Definition 1.3.1

Let (g,h,k) be a specification morphism (see Definition A.2.3

in Appendix A) from G(M) to G(M”).

Then (g,h,k) is called an input match.ing DEIS morphism (abbreviated

IM-DEIS morphism), if there is a function ge:X~~XG such that
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<P.

In this case we say that g matches hputs via ge and that u“ and g(u”) “-
.y
l.-

are matching inputs.

Thus,in a IM-DEIS

g preserves generators

morphism (g,h,k) from G(M)

and length of generators.

•1 m

.K%.

to G(M”),the function

Lemma 1.3.1

In a IM-DEIS morphism (g,h,k) from G(M) to G(M”), the function h

satisfies

a) VqeQ, Vx’~X”, V-c> 0

al) h(6G(q,$T)) = ~~(h(q),$~)

a.z) h(6G(q,ge(x”)T)) = ~~(h(q),x~)

Proof

Follows immediately from Definitions A.2.3 and 1.3.1. •1

Next expand G(M) and G(M’) into their respective DEMSS S
G(M) and

‘G(M”)”

Definition 1.3.2

If (g,h,k) is a IM-DEIS morphism form G(M) to G(M’), then (~,h,k]

is a IM-DEMS morphism from S to s
.

G(M) G(M.) prwlded g satisfies

i(o~@u;@...@o;) = g(u~)@g(u;)Q..*@g(u;)=

{

ge(x~)T1@ge(x;)T2@.00@ge(x~)T , if U; = (x~)~
n n

=

ge(xi)= ~ge(x~)~ @o..@@T s if O; = $T
1 2 n n



Thus, in IM-DEIS morphisms (~,h,k), the input segment is a

pulse train and ~

Definition 1.3.3

merely relables the pulses via ge.
n

D

An input matching DEIS state-morphism (abbreviated IM-DEIS state-

morpk%rn) from a DEIS G(M) to a DEIS G(M’) is a pair (g,h) subject to D

the same restrictions as in Definition 1.3.1. •1
1

The impending discussion of various morphisms will always extend
i

to state-morphisms, as the definition of the latter is properly

contained in that of the former. Consequently, we state now once and E

for all, that all definitions and theorems concerning various morphisms
1

will henceforth extend to their respective state-mor=phisms.

We now proceed

IM-DEIS morphisms.

inversion.

Theorem 1.3.1

to put an algebra-like structure on the class of
I

The operations considered are composition and

1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let
1.

(g”,h~,k’) be a IM-DEIS morphism from G(M”) to G(M”).

Then there is a IM-DEIS morphism (g’’,h’’,k”)from G(M) to G(M”).

Proof

Define (g’’,h’’,k”)~ (gog’,h”oh,k”ok)where the circle operation
E

denotes function composition. Then

B

9



g~:X’’~X, where g; = geog~ .

b) h“:h-l(~)+Q” is onto Q“,since hlh-l(~) is onto ~ and

h-:~”+=Q” is onto Q“. Clearly h-l(~”)c~cQ.

C) k“:y~yf’ is onto, since k:y-c-y” is onto Y’ and k’:Y”+=-Y”

is onto Y“.

d) V(s,e)G h-l(~), VX’’GX”, VT > 0 (see Lemma 1.3.1)

d.1) h“(6G((s,e),@T)) = h“(h(6G(s,e),~T))) =

h-(d~(h(s,e),$~)) = d~(h”(h(s,e)),$~)= 6~(h’’(s,e),$T)

d.2) h“($G((s,e),g’’(x’’)T))= h-(h(6G((s,e),ge(g~(x’’))T)])=

h-(6~(h(s,e),g’Jx’’)T))= d~(h-(h(s,e)),x”T)=

d~(h’’(s,e),x”=, .

e) V(s,e)Gh-l(~)

k“(~[s,e)) = k-(k(a(s,e))) =

k“(k’(h(s,e))) = X“(h’(h(s,e))) = A“(h’’(s,e)).
c1

Theorem 1.3.1 asserts that the IM-DEIS morphism relation is

transitive in the sense that the IM-DEIS relation is preserved under

composition.

Theorem 1.3.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) such that

the maps g, h and k are all bijective and ~= Q.

Then there is a IM-DEIS morphism (g”,h”,k-) from G(M”) to G(M).
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Proof

A
Define (g”,h’,k”) = (g-l,h-l,k-l)where all inverse maps exist

by assumption. Then

a) g“:X-oX” matches inputs via g; = g~l

9
b) h’:Q’--+Q is subjective

c) k“:Y’-Y is subjective
B

d) V(S”,e-)E Q”, VxeX, VT > 0 (see Lemma 1.3.1)

‘Bd.1) h“(d~((s’,e-),$~)) = h-(d~(h(h’(s”,e”)),$~))=

h’(h(6G(h”(s’,e’),@T)))= 6G(h0(s’,e’),$T) .

d.2) h’(d~((s’,e’),g~(x)~)) = h-(d~(h(h”(s’,e’)),g~(x)=))=

D
h’(h(6G(h’(s’,e’),ge(g;(x))T)))= 6G(h-(s’,e’),x7) .

e) V(s”,e”)EQ” 1

k-(a’(s”,e’)) = k“(~’(h(h”(s’,e”)))) =

I
k’(k(~(h”(s”,e-)))) = A(h-(s’,e-)) . u

I

Notice that an invertible IM-DEIS morphism from G(M) to G(M”)

merely provides a relabeling of G(M) in terms of G(M’) and vice versa. “1

This relabeling is consistent vis-a-vis full states transitions and
~..,

9
output values.

We can now formally define
H

Definition 1.3.4

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M’) and let

(g’,h”,k’) be a IM-DEIS morphism from G(M”) to G(M”),
I

The composition of (g,h,k) and (g”,h’,k’) is a IM-DEIS morphism
B

from G(M) to G(MI’)denoted by (g,h,k)o(g”,h”,k’)and defined by

I
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(g,h,k)o(g’,h”.k’)~ (gog-,h”oh,k’ok).

Definition 1.3.5

Let (g,h,k)

The inve~se

<m

•1
<e
l.-

be a IM-DEIS morphism from G(M) to G(M”).

of (g,h,k) is a IM-DEIS morphism from G(M”) to G(M)

‘1, h-l and k-l exist, bydenoted by (g,h,k)-l and defined, whenever g

-1 ~
(g,h,k) (g-l,h-l,k-l) “ c1

It is not difficult to see that this algebra-like structure can

be defined analogously on system morphisms at any structural level.

In general, the transitivity of a morphism relation on a class of

systems, imposes an obvious hierarchy which is almost a partial order.

The invertibizity relation among systems (i.e. the existence

of an invertible morphism that connects them) is easily seen to be

an equivalence relation. Thus it partitions the underlying class of

systems into equivalence classes. This remark holds true for DEISS

and IM-DEIS morphisms in particular.

We now give a standard specialization of IM-DEIS morphisms

(cf. Appendix A).

Definition 1.3.6

G(M) = <T,XG,QG,Q,y,dG,~) and G(M”) = (T,X:,f2G,Q-,Y”,6~,A0)are

called compatible if

a)
‘G = ‘;

b) Y=Y’

❑
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In the following definitions, i denotes the identity map.

Definition 1.3.7

Let G(M) and G(M’) be compatible DEISS, and let (i,h,i) be a

IM-DEIS morphism from G(M) to G[M’). B

a) If~= Q in G(M), then (i,h,i) is called aIM-DEIS
I

homomorphism from G(M) to G(M”).

b) If (i,h,i) is a IM-DEIS homomorphism from G(M) to G(M”) and D

in addition h is bijective, then [i,h,i) is called a

IM-DEIS Lsomorphism from G(M) to G(M”). I•1

Lemma 1.3.2

The IM-DEIS homomorphism relation is preserved

The IM-DEIS isomorphism relation is preserved under

Proof

I
under composition. R

inversion.

I

B
Follows immediately from Definition 1.3.7 and Theorems 1.3.1 and

1.3.2. u
I

IM-morphisms at the DEMS level are analogously defined. In

particular

Definition 1.3.8

‘et ‘G(M) and ‘G(M”) be ‘EMSS”

A trajectory morphism (MATCH,h,k) from TRAJ(q,u) to TRAJ(q”,u”)

R

(see Definition A.1.8 in Appendix A) is called aIM-traj”ectory
I

morphism if

B
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a) u and u“ are matching input segments.

b) MATCH = i.

1.4 Transitional Covering

This section develops

22!

<“T

a DEVS morphism concept, the so-called

transition covering DEVS morphism, based on the so-called transitional

covering relation. The essence of this relation is the ability to

perform a partial matching of sequential state jumps in two DEVSS.

Our preoccupation with jumps is motivated by their fundamental

importance in discrete event systems. In discrete event modeling

situations, sequential state jumps constitute system responses to

significant events during system evolution. In contrast, during the

time intervals separating jumps, the system is considered quiescent,

since its state remains fixed throughout such intervals.

We start by formalizing the transitional covering relation concept.

Definition 1.4.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”).

We say that G(M) is a trwnsZtZonaZ cova%ng of G(M’) (or simply,

that G(M) covers G(M’)) if

a) h(s,e) = (s”,0) ~ e = O

In this case (g,h,k) is called a trwns<tion covering DEIS morphism

(abbreviatedTC-DEIS morphism). The transitional covering relation

denoted GAG.

Thus GAG, if whenever started from h-matching states,

is

D
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under g-matching inputs, a jump occurs in G(M”) only if a jump occurs

in G(M) at the same.instant.

Consequently, every jump in G(M”) can be matched in tiimeby a

jump in G(M),but not necessarily vice versa. In particular this means

that all sequential states of M“ can be matched by sequential states in

M. This observation motivates the following definition.

Definition 1.4.2

A transition covering DEVS morphism (abbreviatedTC-DEVS morphism)

from M to M“ is a quadruple (.g,L,%,%),subject to the following restric-

tions:

a) ~ is a function-g:X”wX called the external event encoding

function.

b) L is a function L:~_NU{O} called the

function where $< S and N is the set of

tmznsition counting

natural numbers.

c) t is a subjective function

state decoding function.

d) % is a subjective function

function.

%:Y*Y” called the

sequential

output decoding

e) Let ~~ {(s,e)GQ: s = 30(;,m((i,0),T)), e = T-u(S,m((S,O),-c))

for some ~e~ and OST t t“(ll(~))}. If (s,e)c~ is associated
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g.z) %(dM((s,e),g(x”))) = 13~(@(3,T),x’)

g.3) it(A(s,e))= A“@T(~),-T)

In this case, we say that M is a transitional coverhg of M- (or simply

that M cove~s M“),and denote M2M”. ❑
~

We need of course to show that this terminology is consistent. To

do this, we will need

Lemma 1.4.1

For elements

a) (s,e) =

of ~ in Definition 1.4.2, the representation

(%$(?,m((t,O),-r)),T - u(S,m((?,O),~)))

is equivalent to the representation

b) (s,e) = $$(:>O),+T)

Proof

Follows immediately from Lemma 1.2.1. El

We now show that TC-DEVS morphisms induce TC-DEIS morphisms in a

natural way.

Theorem 1.4.1

If M~M” via a TC-DEVS morphism (g,L,ti,~),then G(M)~G(M”) via

some TC-DEIS morphism (g,h,k).

.
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Proof

A
Define g to be input matching by setting ge = ~. Next define ~to

be the set Q of Definition 1.4.2.

has the form

(1) q = (s,e) = ~G((~sO)j$T) for

Now, define h:~-Q’ by

In view of Lemma 1.4.1, every qE~
1

(2) h(s,e) = h(@,O),$Tl ~ (~(~),~)EQ”.

h is well-defined due to e) in Definition 1.4.2. It is subjective

since IIis subjective and since O s ~ z t-(fi(~)).

Finally define k ~% from Y onto Y’.

It follows from (2) that

(3) h(s,e) = (s’,0) ~ (s,e) = (2,0) ~ e = O .

Thus h is transition covering.

Now, for any ~G~ and OS.T c %-(h(s))

(4) h@G((~,O),$~)) = (m(~),~) =

due to (1) and (2).

For any ~E~ and T = k“(%(~))

(5) h(rSG((~,O),$T)) = h(~&L(~)+l),O) =

(ti($(~,L(~)+l)),O) = (6~(7@),0) =

by f,l), f.2) and f.3) in Definition 1.4.2, (1) and (2).

In view of (l), (4) and (5),we conclude by induction on m((;,O),r) that

(6)” h(dG((s,e),4T)) =6&(h(s,e),$T), ‘(s,e)~~, v$~~~~

due to the composition property of 6G and 66.
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Next, for any ~G~, O ST x %“(h(;)) and x“GX”

(7) h(~G((&O), g(x~))) =h(~G((~, O),~(x”)T)) =

W

h($&((io) + A(x”)) ,0)

I
=(*(6M($$(3,0), Q*(X’))),0) =

(6fi((tI(3),T),x-),o) = (c3@;((iI($),o) ,rj)J,x-),o)=

“I 6~((1’f(:),o),x;)= 6:(h(6,0),x~)

I by the definitions of g and h above, the definitions of 6G and

d; (see Definition 1.2.4), Lemma 1.4,1, g.1) and g.2) in

I Definition 1.4.2, (1) and (2).

u
In view of (1) and (7) we conclude by induction on m((6,0),~) that

(8) h(rSG((s,e),g(x~))) = ~~(h(s,e),x~), ,V(s,e)E~, Vx~C~

I again due to the composition property of 6G and d;.

Finally, for any (s,e)s~

(9) k(a(s,e)) = %(~(6G((S,0),$T))) =

I A’(II(3),T)= A“(h(s,e))

I
by (1) and (2), Lemma 1.4.1 and g.3) in Definition 1.4.2.

We conclude from Definition 1.4.1 that (g,h,k) is a TC-DEIS

morphism as required. c1

Next, we prove that TC-DEIS morphisms induce TC-DEVS morphisms in

a natural way.

Theorem 1.4.2

Let G(M) 3G(M”) via a TC-DEIS morphism (g,h,k). Then MJM” via

D some TC-DEVS morphism (&,L,fi,%).
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Proof

R

Consider the set ~ ~ {s ES: (s,O)c~ and h(s,O) = (s’,0)}.

Decompose h into h = (hi,h2) and define 11:~+-S” by 9

9
A

Next, let g = ge and-k ~ k.

Let (s,e) be in ~ of e) in Definition 1.4.2. I

Suppose (sje) is associated with (~1,~1) and (32,T2). Then

B
(2)

due

(3)

Let
A

GEs. Then there is (s”,O)GQ” such that h(~,O) = (s”,0).

Now, I
(4) d~((S’,O),I&(5.$ = ~;(h(:,o),$%.(s,l)=

h($@O),@%.[s>$ I

On the other hand
I

(5) 6{((s”,o),@t.(5.)) = (6;(s’),0)

Hence, (4) and (s) imply I

(6) h(~G((~,@, O$-(s. $) = (~~(s”),o)
9

By the transitional covering property, we deduce from (6) that

1!6G((4,0),$*.[S.1) has the form
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<7
l.-

:m

(7) 6G((:so),$%.[~.)) = (~$(~,L+l),O) for some L = L(s) 20

m lm-

‘1’bus,(6) and (7) imply that during the interval (O,t-(s”)]we had
rr.
m

I
one autonomous transition in G(M’) from state (s-,O) to

state (6”(s”),0),while in G(M) we had L+l transitions from
$ .,

I state (~,0) to state (~ (~,L+l),O)during the same time interval.
+

In view of (7) we can define a subjective map L:~*NU {O}

9 such that

I

(6$(*(3)),0)

due to (8), and the definitions of .;and%.

Thus, (9) shows that

(10) ~$(~,L(~)+l)Ei

by definition of ~. Moreover, from (9) we deduce

by definition of%.

A-
Nextj for any ~G~ and O $T K k-[%[~)),let s = 6+(~,m(($,0),t)) and

E e!=
- a(3,m((~,0),~)) . Then for any X’GXO

I

(12) h(dM((s,e),g(x”)),O) = h(6M(~G((&O),~T),~(x”))) =

h(6G((~,0),s(x”)T)) = h(6G((~,0),g(x~))) =

6~(h(~,0),x~) = (6~(~~(h(~,@,$~),x%O) =

(6fi(6~(@I(6), o) ,$T),X’),O) = (afi((lr(wr),x’), o)
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due to Lemma 1.4.1, by definitions of 6G and 66 (see Definition 1.2.4),

a
and by definition of g, % and S.

Thus, (12) shows that I

(13) 6M((s,e),s(x’))e S

a
by definition of ~. Moreover, from (12) we deduce that

(14)fi(fSM((s,e),g(x”)))= d~((h(;),~),x”)
m

by definition of-h.

Finally, by Lemma 1.4,1 and the definition oft we have

(1S)%(~(s,e)) = k(~(s,e)) =
B

X’(h(s,e)) = a’(h(6G(~,0),+~)) =

A’(d@,O),$T)) = A“(h(:,W,T) =

A“(*(;), T) m
We conclude from Definition 1.4.2 that (~,L,iT,Sc)is a TC-DEVS morphism

[as required. ❑

Corollary 1.4.1

(g,h,k) is a TC-DEIS morphism from G(M) to G(M”) iff (g,L,%,%) is
I

a TC-DEVS morphism from M to M“.

Moreover, in this case ~= ge, %= hll$X{Ol and -k= k. m

Furthermore, hl(s,e) zlr(~) whenever (sje) = 6G((~,0),$T)c~. ❑

I

Theorem 1,4.2 shows that the essence of a TC-DEVS morphism from I

M to M: is the ability to define a IM-DEIS morphism (g,h,k) from G(M)

to G(M’) such that h =
m

(h1,h2) satisfies

for some maptron S ~ {s: (s,e)e~ for some e].
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In other words II is definable whenever hl(s,e) does not depend on
c=
z=

e. This is, of course, possible iff all the jumps of G(M”) can be r?
r-
$m

matched in time with jumps of G(M),i.e. iff (g,h,k) is a TC-DEIS
<m
<m
h!-
=1-

morphism. *-
r~
rs

We now show that .morphismsof the transitional covering type are

transitive.

Theorem 1.4.3

If (g,h,k) is a TC-DEIS morphism from G(M) to G(M”) and (g”,h’,k”)

A
is a TC-DEIS morphism from G(M’) to G(M”), then (g’’,h’’,k”)=

(g,h,k)o(g”,h”,k“) is a TC-DEIS morphism from G(M) to G(M”).

Proof

We already know that (g’’,h’’,k”)is a

to G(M”) by Theorem 1.3.1. It remains to

(1) h“(s,e) = (s’’,0) ~ e = O

Now, by definition

(2) h“(s,e) = h’(h(s,e)) = (s’’,0)

IM-DEIS morphism from G(M)

show that

Since (g”,h’,k”) is a TC-DEIS morphism, (2) implies

(3) h(s,e) = (s’,0) for some s“eS’.

But (g,h,k) is also a TC-DEIS morphism. Hence (3) implies

(4)’ e = O

which was to be proved. ❑

One can similarly show that TC-DEVS morphisms are transitive,

provided composition of TC-DEVSS is appropriately defined, viz.

(%tf,~lt,*tt,~tf]g (~,L,fi,~)o($k”,L”,Y,%’)where
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1. g“:x”~X is defined by

2. LHfi-l(S’)-+NU {O} is defined by

3. ~M:y-l(&A)+S~f is defined by

%“ ! y-oh

4. %“:Y_Y” is defined by

%“ ~ I@&”

The proof is omitted, since it is quite tedious and does not

provide additional insight into transition covering morphisms.

We shall, however, proceed to define the standard hierarchy of

TC-DEVS morphisms. In the following definitions i denotes the

identity function.

Definition 1.4.3

Two DEVSS M = (X,S,Y,S,6,A)andM’ = (X”,S’,Y”,%”,6’,A”)are

called compatible if

a) x=x’

b) Y=Y”

Definition 1.4.4

Let (i,Ljlr,i)be a TC-DEVS morphism between compatible DEVSS

M and M’.

Then (i,L,ti,i)is called a TC-DEVS

A TC-DEVS homomorphism is called a

addition% is injective.

homomorphism, if ~ = Q.

TC-DEVS Lsomorphisrn, if in



u “mc...

The concepts of TC-DEIS homomorphism and TC-DEIS isomorphiem are
:g
<-.
r-

1

defined in the obvious way, similarly to the hierarchy of IM-DEIS
:W
G&
<a
l.-.

morphisms.
FW,
.-

i

rr

We conclude this section by carrying over the TC morphisms to the
%

DEMS level.

Definition 1.4.5

I
Let (g,h,k) be a TC-DEIS morphism from G(M) to G(M”). Let (~,h,k)

be the induced IM-DI?MSmorphism from SG(M] ‘0 ‘G(M”)”
(See Definition

i
1.3.2).

Then (~,h,k) is called a TC-DEMS morphism from S

1

G(M) ‘0 ‘G(M-)*

In this case we say that S
G(M) coveys ‘G(M”)

, and denote S
G(M) ‘G(M’)”

o.

I

Conclusion 1.4.1

i Definition 1.4.5 requires that (g,h,k) be a TC-DEIS morphism from

G(M) to G(M”) iff (~,h,k) is a TC-DEMS morphism from SG(M) tQ SG(M.). D

i Conclusion 1.4.1 and Corollary 1.4.1 give rise to the TC morphism

s

paradigm of Figure 1.4.1.

At the DEMS level, it is useful to restrict transitional covering
.

I
to particular trajectories as follows.

Definition 1.4.6

I ‘et ‘G(M) and ‘G(M”)
be DEMSS, and let (i,h,k) be a IM-trajectory

morphism from TRAJ(q,~) to TRAJ(q”,o”). (See Definition 1.3.8).

a
We say that (i,h,k) is a TC-trajectory mo~hism if



}

(g,h,k)

G(M) ●
L
r 11G(M’)

I
\

\ I

14* <
(ii,h>k)

‘G (M) ‘‘G(M3

Figure 1.4.1: Relations among Discrete Event Structures and
the Associated Transitional Covering Morphisms.
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a) h(STRAJ~,u(t)) = (s”,0) ~ ST~q,u(t) = (s,0).

In this case we say that TRAJ(q,u) is a transitional cove.r<ngof
%Vn
<&
“-.

TRAJ(q”,o’) (or simply that TRAJ(q,u) covers TRAJ(q”,u”)),and denote
FT

NW

rr.

TRAJ(q,w)aTRAJ(q”,u”).
❑

K%

From Definition 1.4.6 we have the immediate

Conclusion 1.4.2

Let (.g,L,*~%)be a TC-DEVS morphism from M to M“ and let (g,h,k)

be the TC-DEIS morphism induced by it according to Theorem 1.4.1.

Then

a) VU’ ET$+, Vqe~, STRAJ -
q,g(w’)3sTWh(q),w”

where ~ is defined in Definition 1.4.5. n

1.5 Transitional Matching

Transitional covering allows us to match in time all jumps of a

morphic image, with some of the jumps of its morphic preimage. In

addition this matching is consistent by virtue of the underlying

discrete event morphism.

Thus, transitional covering is a situation whereby the morphic

preimage undergoes jumps at a “rate” which is higher than in its morphic

image. The natural way to specialize covering morphisms is to require

those “rates” to equal, so that all the jumps in both the morphic

preimage and its morphic image can completely be matched in time.

In accordance with the foregoing discussion, this situation will be

called transitional matching.
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We start by formally definingit at the DEIS level.

,.

E
Definition 1.5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). We say

that G(M) and G(M”) are transitionally matching if
&

a) h(s,e) = (s’,0) ~ e= O s
b) h(s,O) = (s’,e”) ~ e“ = O

In this case (g,h,k) is called a transition matching DEIS morphism D

[abbreviatedIM-DEIS morph<sm). •1
E

Definition 1.5.1 shows that a TM-DEIS morphism is a TC-DEIS 8

morphism satisfying condition b) in the above. This means that if .

G(M) and G(M’) are started from h-matching states under g-matching
R

inputs, then G(M) undergoes a jump iff G(MO) undergoes a jump at that
I

very instant.

The following theorems give necessary conditions for transitional i

matching.

Theorem 1.5.1
t

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M”). Then

a) h(s,e) = (s”,e’) ~ %(s) - e = %“(s’) - e- E

Proof

Suppose
1

(1) h(s,e) = (s”,e”)

Since (s,e) = 6G((s,0),$e), we have by the composition property of 1

6G that

R
9
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(2) 6G((s,e),$%[~)-e) = 6G(6G((s,o),oe),$*(s]-e)=

6G((%O),0 ) = 6G((S,0),$$(S)) =e+t(s)-e

(6$(s),0) = (s$(s,l),O)

Therefore, using (2)

(3) d~((s”,e-),$%(s)-e) = d~(h(s,e),$t(sl-e)=

h(6G((s,e)~$%(s)-e)) = h(~$(s),o)

By transitional matching, we conclude from (3) that

(4)

for

But

(5)

~:((s-,e-),f+&(s)ee)= ‘(a~(s)so) = (F~(s’,i),O)

some i z 1.

using the same line of reasoning as in (2)

~~((s”,e-)j$*“(s’)-e.) = (6;(s-),0) =

($-(s’,l),0) .

Comparing (4) and (5), we conclude that

(6)

Now,

(7)

t(s) - e2 *“(s”) - e-

applying transition function preservation to (5) yields

(6; (s-),0) =,d~((s-,e”),$$.[s-l-e-) =

d;(h(s,e),~%.(s.l-e.)= h(6G((s,e),$$.[s.)-e-)) Q

By transitional matching, we conclude from (7) that

(8) 6G((s,e),$&.(s-)-e.) = (~$[s,j),o)

for some j 2 1.

Comparing (2) and (8), we conclude that

(9) $(s) - e S %’(s”) - e“

Finally, a) follows from (6) and (9). ❑



54

Lemma 1.5.1

-..

E
Under the conditions of Theorem 1.5.1 we have, in particular, that

if h(s,e) = (s”,e”), then I

a) [S,O)GQ + *(S) = *“(S-).

Proof I
,‘“

By transitional matching’

(1) (S,O)e~ ~ h(s,O) = (s’,0) @

Hence we may set e = e’ = O in condition a) of Theorem 1.5.1, and
I

condition a) of this lemma follows immediately. ❑

1

Theorem 1.5.1 states that for TM-DEIS morphisms (g,h,k), the

.[
residual times to the next jump of h-matching states, are always equal.

However, this is not true for the respective time advance functions,
9

unless as asserted in Lemma 1.5.1, the state in the morphic preimage

is such that the jump to its sequential component is in the morphism n

domain. In this case we have the following characterization of TM-DEIS ..

#
morphisms.

Theorem 1.5.2 .

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and define B

5A
= {scS: (s,e)ea for some O s e z %(s)}. Suppose c satisfies

(a) (s,e)e~ + (s,O)e~

Then (g,h,k) is a TM-DEIS morphism iff

“u

there is a subjective map fi:~--c-S,such that

(b) v(s,e)ca, h(s,e) =(*(s),e)
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<?
r-

Proof

(~) Suppose there is% satisfying (b).

Now, whenever h(s,e) = (s”,e’), then by (b)

(1) (s”,e”) = (fi(s),e)

and hence

(2) h(s,e) = (s-,e”) ~ (e = O iff e“ = O)

which is equivalent to the transitional matching property.

(~) Suppose (g,h,k) is a TM-DEIS morphism.

Define ll:~--@Sby

(3) %(s) ~.hl(s,O) whereh= (h1,h2).

If s“ES”, take any se~such that h(s,O) = (s’,0). Such sGS

exists by transitional matching and

%(s) = s- so that tiis subjective.

(4) VS es, h(s,O) = (ti(S),0)

subjectiveness of h. Clearly,

Moreover, by definition of%

But by Lemma 1.5.1 and in view of (a)

(5) Vs e3, %(s) = %“(tl(s))

Finally, taking note of (4) and (5) and using transition function

preservation, we have for any (s)e)E~

(6) h(s,e) = h(~G((s,0),4e)) =

6~(h(s,0),$e) = d~((~(s),o),$e) =

(h(s),e)

where (6) is identical to (b). c1

When condition (a) in Theorem 1.5.2 does not hold, we have a

modified version of this theorem.
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Corollary 1.5.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M’). Define

5A
= {se~: (s,e)e~ a (s,O)~~} where~is defined in Theorem 1.5.2,

and let ~ ~ {(s,e)e~: se~ and O<e < ~(s)}.

Then

A

a) (g,hlQ,k) is a TM-DEIS morphism

iff

.
b) there is a subjective mapll:S-S” such that

V(s,e)e~, h(s,e) = (It(s),e)

We remark in passing that Theorem 1.5.2 and Corollary 1.5.1

constitute a sharpening of Theorem 6 in [Zl] Ch. X Sec. 10.5.

The concept of TM-DEIS morphisms motivates the following defini-

tion of TM-DEVS morphisms.

Definition 1.5.2

Let (s,L,IT,%-)

M to M’.

We say that M

a) L(s) ~ O,

u

u
be a TC-DEVS morphism (see Definition 1.4.2) from

and M“ are transitionally matching if

In this case, (%,L,%,%) is called a t~ansitionmatehing DEVS morphism

(abbreviatedTM-DEVS morphism). •1

i

We again need to show that this definition is consistent. First

E
we show that TM-DEVS morphisms induce TM-DEIS morphisms according

to Theorem 1.4.1.

R
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Theorem 1.5.3

Let (g,L,fi,i@be a TM-DEVS morphism from M to M-.

e!
%%
c?
r-
:*
<e,
<..?
.-
m-

Then there is M-
m

a TM-DEIS morphism from G(M) to G(M’).

Proof

Since (g,L,ti,%)is a TC-DEVS morphism, we have that (g,h,k) of

Theorem 1.4.1 is a TC-DEIS morphism from G(M) to G(M’). We show that

(g,h,k) is a TM-DEIS morphism.

By definition of TM-DEVS morphisms, it follows that for any ~G~

+p,o)) = t(:)

due to f.1) in Definition 1.4.2. Furthermore,

(2) ~@(:,L(2)+l) = $&l) = 8$(:)65

by f.2) in Definition 1.4.2.

From (1) and (2) we conclude that

(3) ~= {(s,e): se:, OSe t k(;)]

so that in particular

(4) (s,e)e~ ~ (s,O)&~

Clearly, every (s,e)~~ has the representation

(5) (s,e) = ~G((~,O)>+T)> for T = e and ~ = se:

Hence by (2) of Theorem 1.4.1, for any (s,e)e~

(6) h(s,e) = h(6G((s,0),$e)) = (ti(s),e)

where h is subjective by definition.

We conclude from”Theorem 1.5.2 that (g,h,k) is a TM-DEIS morphism.

❑
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Next, we show that TM-DEIS morphisms induce TM-DEVS morphisms

according to Theorem 1.4.2.

Theorem 1.5.4

Let (g,h,k) be a TM-DEIS morphism from G(M) to G(M’). Then there

is a TM-DEVS morphism from M to M“.

Proof

Since (g,h,k) is a TM-DEIS morphism, we have that (g,L,fi,le)of

Theorem 1.4.2 is a TC-DEVS morphism from M to M“. We show that

(.g,L,%,3&)is a TM-DEVS morphism.

It remains to show that

(1) L(s) = O, V~G6

Consider any 5E~. By definition of ~ in Theorem 1.4.2 we have that

(~,o)e~, whence by Lemma 1,5.1

(2) ~(~) = ~’(hl(~,O))

where h = (h1,h2). But hl($,O) =*(:) by (1) of Theorem 1.4.2.

Hence (2) implies

(3) %(;) = *’(*(:))

By f.1) in Definition 1.4.2

Comparing (3) and (4) gives us

D

9

Since M is regular we conclude that L(~) = O which was to be proved. Q

.B
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<-.
r-:ED

The hierarchies of TM morphisms and their variants is analogous to
CP.
Cn
*-
r

the hierarchies of TC morphisms in the previous section. w.b-
tT
ev

We now show that the transitional matching relation is transitive.

Theorem 1.5.5

If (g,h,k) is a TM-DEIS morphism from G(M) to G(M’) and (g-,h’,k”)

is a TM-DEIS morphism from G(M”) to G(M”), then

(g’’,h’’,k”)~ (g,h,k)o(g”,h”,k-)is a TM-DEIS morphism from G(M) to G(M”).

Proof

We already know by Theorem 1.4.3 that (g’’,h’’,k”)is a TC-DEIS

morphism from G(M’) to

It remains to show

1 (1) h“(s,O) = (s’’,e”)

G(M”).

+ e“ = O

By definition of h“ we may rewrite the antecedent of (1) as

(2) h“(s,O) = h-(h(s,O)) = (s’’,e”)

Denote h(s,O) = (s”,e-). By transitional matching of G(M) and G(M”)

via (g,h,k)

(3) h(s,O) = (s’,e”) ~ e’ = O

Setting (3) in (2) yields

(4) h“(S,O) = h’(sO,O) = (s’’,e”)

But by transitional matching of G(M”) and G(M’?)via (g’,h’,k’), (4)

implies

(5) e“ = O

0’
which was to be proved.
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The proof at the level of TM-DEVS morphisms is analogous and will
I

be omitted.

A sufficient condition ensuring an invertible TC-DEIS morphism to 1

be a TM-DEIS morphism is given in

Theorem 1.5.6

Let G(M)2G(M’) via an invertible TC-DEIS state-morphism (g,h).

Suppose that in addition GAG via the inverse TC-DEIS E

state-morphism (g,h)-l,

Then G(M) and G(M”) are transitionally matching.

i

Proof

By definition h:Q-Q- is bijective and h-l:Q”*Q is bijective.

Since G(M) covers G(M”) it follows that
1

(1) h(s,e) = (s”,0) ~ e= O

Now, assume

(2) h(s,())= (s’,e’)

Applying h-l on both sides of (2) gives

(3) [s,0) = h-l(s’,e”)

But since G(M”) covers G(M) via (g,h)-~ we have
1

(4) h“-l(s”,e”) = (S50) + e“ = (I

From [2), (3) and (4) we conclude I

(5) h(s,O) = (s”,e”) ~ e’ = ‘O

Finally (1) and (5) show that G(M) and G(M”) are transitionally matching.
‘u
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I
While a chain of TC morphisms produces a sequence of discrete

B systems with a “decreasing rate” of jumps, a chain of TM morphisms

event
c=
X3!

keeps <7
r-

the jump “rate
<m

“ in the sequence “fixed”.

!

46
M-
WT

TM isomorphisms are easily seen to partition a class of discrete b.-
r~
G

r

event systems into equivalence classes of mutually TM isomorphic systems.

In each such class, whenever the members are started in h-matching states

I and evolve under g-matching input segments, they will always undergo

simultaneous jumps throughout the evolution.

B A TM morphism paradigm can be derived analogously to the TC

9
morphism paradigm depicted in Figure 1.4.1.
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1.6 The Completion and Parallel Composition Operations R
This section discusses two operations on discrete event systems:

the so-called completion operation defined on IM morphic pairs of

DEVSS, and the parallel,composition operation defined for every pair

of DEVSS.

The completion operation is motivated by the heuristic observation

that every input

covering one, in

procedure of the

matching morphism can be strengthened to a transition

a canonical manner. This is achieved by a “completion”

morphic preimage, relative to the morphic image. The

operation is carried out by the transitional completion algorithm,

which is embedded in the following procedure.

Our starting point is any pair of DEVSS M = (X,S,Y,*,6,A) and

M“ = (X-,S’,Y”,k’,8”,A”),provided there is a IM-DEIS morphism (g,h,k)

from G(M) to G(M”). The procedure produces a “complete” DEVS

fi= (X,~,Y,%,~,~) inwhich~, %, ~ and ~ are constructively defined

by the Transitional Completion Algorithm, to be described later.

This description relies heavily on the definitions of two auxiliary

functions which we now proceed to introduce.

First d.efinea function eJ:S-[O,rn] by

r

min{O < e < %(s): ~s”GS”3 h(s,e) = (s-,O)}, if the minimum

eJ(s) ~

\

exists

%(s), otherwise

Intuitively, eJ(s) gives the time to the first jump in either M or M“

when started autonomously from states (s,0) and h(s,O) respectively.

Next, denote h(s,O) = (s”,e-) whenever (s,O)G~, and define a

function J:S-NU{O}U{m} by

R
II
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[

O, if eJ(s) = ~(s)

J(s) ~ m-((s”,e’)j~(s)), if eJ(s) z $(s) and h2(64(s),0) # O

( ((m’ s“,e’))*(s)) - 1, if eJ(s) t g(s) and h2(8$(s),0) = O

where m“ is the jump counter function (see Definition 1.2.3) in M“ and

I h2 is the clock coordinate in h = (h1,h2). Intuitively, J(s) gives

I

the number of jumps that M’ undergoes autonomously from state h(s,O)

during the time interval (0,%(s)).

I We are now ready to describe the Transitional Completion Algorithm.

1 Algorithm 1.6.1 (TransitionalCompletion Algorithm)

I
For any (s,O)C~ denote h(s,O) = (s”,e”). Then perform for any )

s eS the following:

1 1) Put the sequence {~i}~~~) in ~,where ~
i
~ (i,s), O s i <J(s).

I We assume, without loss of generality, that SnS” = Q,

so that S, S“ and ~ are mutually disjoint.

‘!
2) Define ~:~--+(O,IXI]by

I

[

eJ(s), if i = O and eJ(s) > 0

*“(s”), if i = O and eJ(s) = O

a
Z(;i) ~

$’(~$(s’,i)), if O z i z J(s)

1 J(s)-le

$(s) - ~ ~(~i), if i = J(s)
1=0

{

;. = (i + 1,s), if Osi <J(s)1+1
$(;i) Q

(0,6$(s)), ifi = J(sJ

and
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$J(;i,;) ,x) ~ (o,6M((s,1~1 qFj)+6),x))
j=O

This completes the Transitional Completion Algorithm.

Notice that whenever sCS - ~, where ~ = {s~S: (s,e)e~ for

some O s e K ~(s)}, then the minimum is undefined and we always have

eJ(s) = *(S). Consequentlyj in this case J(s) = 0, always. This fact

renders steps 1) - 4) meaningful for all sCS.

We are now ready to define the transitional completion operation

on morphic DEVSS.

Definition 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M’). The

transitional completion of M relative to M“ (denoted fi(M”))is a

‘DEVS h = (~,~,~,~,~,~)where

a)X=X

c) ~, ~, ~ and ~ are defined by applying Algorithm 1.6.1 (the

Transitional Completion Algorithm) to each sGS.

In this case we also say that G(R) is the transitional completion of

G(M”) relative to G(M’). c1

The construction of a transitional completion is illustrated in

\
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I Example 1.6.1

9 LetM= (X,S,Y,%,6,A)be defined by

X=o

u s ={s.,sl}

Y= [o,l/2T)

*(s.) = +(sl) = T

A(si,e) = e (mod’1/2-c)

Let M’ = (X”,S-,Y”,%”,6”,A-) be defined by

X“=o

s’ = {S;, sp

Y’ = [o,,l/2T)

*’(SG) = 3/2T, %-(S~) = 1/2~

A(si,e) = e (mod l/2-c)

Define a IM-DEIS morphism (g,h,k) from G(M) to G(M’) where

g is the empty function

h:Q-Q’ is defined by

(

(s~,e), ifi = O

h(si,e) =

\

(s~,~ + e), ifi =1 and O<etl/2~

L(s~, e - l/2T), otherwise

k:Y-+Y” is the identity function
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Now,

{

*(sO), if i = O
eJ(si) =

l/2T, if i = 1

whence J(si) = i, i = 0,1.

Define fi= (k,s,?,i,i,i) by

%=@

5= {(O,s.), (O,sl), (l,sl)l

i = [o,l/2’T)

2(0,s.) = %(s.) = T, i(o,sl) = {(l,sl) = l/2T

%4(0,s.) = (0, s+ 3.(0,s1) = (1,s+ $(l,sl) = (%s.)

i((j,si),e) = e (mod 1/2T)

Then fiis the transitional completion of M relative to M“. ❑

From the completion algorithm we derive the following conclusions.

Conclusion 1.6.1

The autonomous operation of fi(M”)is periodic in the following

sense. If fiis started in state ((O,s),O)G~, then it evolves autono-

mously through the sequential state sequence

(

{(O,s),(l,s),....(J(s),s), (0,6+(s)),...}, ifJ(s) <CO

<{(0,s),(1,s),...}, if J(s) = @

The general scheme is

(0,s) - - - (o,T@(s,l)) - - - (0,$(s,2)) - - - .+.

---- (O,T$(s,n)) - - - ...

where the dashes together with their leftmost sequential states stand

for some periodic sequence. o
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I
KS

Conclusion 1.6.2
:.7
c-,
r-
;*

9

It follows from 2) and 3) in Algorithm 1.6.1 that for every
6P,
cm
P-

(s,e)~~, the clock e has the representation
?T
h-
rw

D

c%

a)e= ~((O,s),i) + ~ for some O <i <J(s) and O s: t ~(i,s)

D“

where & is the total time advance function (see Definition 1.2.2) of ~.

Moreover, this representation is unique. •1

Conclusion 1.6.3

It follows from 2) and 3) in Algorithm 1.6.1 that

(a) h(s,e) = (s-,O)
I

iff

(b) ‘J(s) < %(S)

and
f
i eJ(s) + ~~”(~~(s~,j)), if eJ(s) > 0

j=l
(c) e=( .

\

~k”(~;(s;,j)),if eJ(s) = O
j=O

A
for some O <i t J(s), where s~ = hl(s,O). •1

The semantics of the transitional completion operation are

suggested by the terminology.

to the morphic preimage, which

image. This is done by adding

Intuitively, it amounts to adding jumps

correspond to all jumps in the morphic

sequential states to the former and

redefining its time advance function, transition function and the

output function, in a consistent manner. In other words, the transi-

tional completion operation takes any morphic preimage and completes

it into a transitional cover of its morphic image.
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Formally, we have

8

Theorem 1.6.1

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”). Let

ii~ fi(M”)be the transitional completion of M’ relative to M“. Then

a) G(fi)3G(M) via a TC-DEIS isomorphism (i,fi,i)

b) GAG via a TC-DEIS morphism (g,fi,k).

Proof

Define a IM-DEIS morphism (i,fi,i)from G(fl)to G(M), where fi

is given by

‘(1) V((i,s),5)G Q, fi((i,s),g)Q (s,&((O,s),i) + ;)

and ~ is the total time advance function of fi. Observe that

OS~((O,s),i) + ~ < %(s), by 2) in Algorithm 1.6.1.

For any (s,e)e Q, represent e as e = ~((O,s),i) + ~ for some

Osis J(s) andO

take ((i,s),;)c~.

be from ~ onto Q.

s; < %[i,s), according to Conclusion 1.6.2. Now,

9
Then fi((i,s),~)= (s,e) by (l),and fiis shown to

Next, suppose
s

= fi((i2,s2),S2)

A
Then necessarily S1 = S2 ~ s by [1). Hence we can rewrite (2) as

(3) (s,~((O,s),il)+ SI) = (s,~([0,s),i2)+.32) .1

where the representations of the clocks in (3) are unique by
9

Conclusion 1.6.2.

Conclude that il = i2 and ~1 = &2 from which follows I

(4) ((ii,sl),~1) = ((i2,s2),62)
1

We have that (2) implies (4), i.e. ~ is injective.

I
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Now, in view of Conclusion 1.6.1 it suffices to show that transition

function preservation holds only within the indicated periods. This

is true due to the composition property of transition functions.

More accurately, it suffices to show

(5) fi(&(((o,s),o))$T)) = @((ojs),o)s4T)

only for all ((0,s),0)Ed, and O s T f k(s), and

(6) ‘i(5M(((i,s),;)>x),0) = (6M(fi((i,s),:)jx),0)

for any ((i,s),~)~~ and xeX.

Now,

(7) ~G(((0,s),0),4T)= ((i,s),~)

for some O s i <J(s) such that

(8) T= ~((O,s),i) + ;

Using (7), (1) and (8) we have

(9) fi(~G(((O,S),@,$ T)) = ~((i,s),~) =

(s,&((O,s),i) + ;) = (s,~)

while using (1) we obtain

(10) $JW%S)>WJT) = $J(%O),OT) = (s,~)

Thus, (9) and (10) show that (5) holds. In view-of 3) in Algorithm

1.6.1, (9) and (l), we find that

(11) fi(~M(((i,s),~),x),O) = fi((0,6M((s,~((0,s),i) + 5),x)),0) =

(6M((s,&((0,s),i)+ =),x),O) = (dM(fi((i,s),~),x),O)

and (11)

Next, we

1.6.1 we

shows that (6) holds.

show preservation of output function. From 4) in Algorithm

immediately deduce that for any ((i,s),=)~~
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(12) ~((i,s),;) = k(s,~((o,s),i) + ~) = a(fi((i,s),~))

We have shown that (i,fi,i) is a IM-DEIS isomorphism from G(fi)to G(M)

and it remains to show that G(@ JG(M) via (i,fi,i).

Suppose

(13) fi((i,s),~)= (s,0)

By the representation of Conclusion 1.6.2, (13) implies

(14) 6((0,s),i) + ~ = O

which shows in particular that

(15) 6= o

Thus, from (13) and (15) we conclude that G(fi)3G(M) as required,

and the proof of a) is concluded.

Next define (~,fl,fi)~ (i,~,i)o(g,h,k) = (g,hofi,k).

Then (~,fi,~)is a IM-DEIS morphism from G(fi)to G(M’) by Theorem

1.3.1. It remains to show that GAG via (~,fi,~).

Suppose

(16) ~((i,s),~) = (s’,0)

Then

(17) h(fi((i,s),~)) = (s”,0).

Denoting fi((i,s),=) ~ (s,e), (17) becomes

(18) h(s,e) = (s”,0)

By Conclusion 1.6.3 and due to (18) we may represent e as follows:

I eJ(s) + ~%”(~~(s”,j)), if eJ(s) > 0
j=l

(19) e= ~

1“~*’(T;(s’,j)),if eJ(s) = O
j=O

where s“ ~ hl(s,O).
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9

D

D

D

But by 2) in Algorithm 1.6.1, (19) implies that

(20) e = 3((0,s),i)
:W
<e.
<P.

On the other hand, from Conclusion 1.6.2 we have that e has a
h-
.T
l--
r7-

unique representation
r%”

(21) e= 6((0,s),i) + ~

Equating (20) to (21) finally gives

(22) 6= o

We conclude that (16) implies (22),and the proof of b] is completed.

o

Theorem 1.6.1 shows that every transition in M and M“ can be

matched by a transition in fi(MO). The following theorem shows that

conversely, every transition in fi(M”)can .bematched by a transition in

either M or M“.

Theorem 1.6.2

Let (g,h,k) be a IM-DEIS morphism from G(M) to G(M”) and let

ti~ il(M”). Let further fiand ~ be as in Theorem 1.6.1.

Suppose ~e~. Then

a) fi(~)has the form (s,0)

or

b) fi(~)has the form (s”,0).

Proof

Let ~ = ((i,s),O)where seS, O <i <J(s), and denote

h(s,O) ~ (s’,e-).

Suppose i = O. Then by definition of h
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(1) i(q) = i((o,s),o) = (s,0)

Suppose O K i <J(s). Then by definition of R

(2) H(q) = h(fi((i,s),O))= h(s,~((O,s),i))

But by the definition of $ in 2) of Algorithm 1.6.1

[

i
eJ(s) + ~k”(~’(s’,j)), if eJ(s) > 0

j=l +

(3) ;((O,s),i) =

~t”(~~(s’,j)), if eJ(s) = O
j=O

Notice that we also may assume

(4) eJ(s) t t(s)

or else J(s) = O by definition of J.

Now, in view of (2), (3) and (4), Conclusion 1.6.3 implies that

(5) I(q) = h(s,~((O,s),i)) = (s-,O).

and the proof is complete.

Corollary 1.6.1

Let (~,;)e~. Then by Theorems 1.6.1 and 1.6.2

s= O iff li(;,;)= (s,0) orfi(;,;) = (s”,0).

c1

a

E

Corollary 1.6.1 says in fact that the states of M, M“ and M(M’) can

be matched in such a way that a jump occurs in fi(M”)iff a jump occurs
9

concurrently in M or in M’. Another way to state it is as follows.

I

Theorem 1.6.3

Let (g,h,k) be a IM-DEIS

ilk”M(MO). Let further fiand

morphism from G(M) to G(M”) and let

R be as in Theorem 1.6.1.
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For any (~,6)GQ, denote h(~,~) ~ (s,e)GQ and fi(~,~)~ (s’,e”) GQ”

whenever R (~,5) is defined. Then

<7

or
r-
:WO

Proof

Suppose both a) and b) are false for some (~,~)G ~. Let

Suppose that

By transition function preservation

~G((s)e),@t(s)-e)= (~o(s)$o)

Now, G(fi)JG(M) by Theorem 1.6.1, so that (3) implies

(4) 3G((:,&),$%[s1-e) = (S’,0) for some ~*E3

But (4) contradicts (l), in view of (2). Hence we

(5) ~(~) -.ilz $(s) - e

Consequently, by transition function preservation

(6) ‘i(3G((=,6),@~(~)-&)) = 6G(fi(:,&),$~[@ =

6G((s)e),$~[~]-~)= (S>e + 2(=) - ‘)

where e + ~(~) - a > 0.

Next, suppose

(7) %(~) - & > *“(s”) - e-

and obtain whenever ~ is defined

must assume
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Now GAG by Theorem 1.6.1, so that (8) implies

(9) 3G((:~&)$$~*(sz)-e4)= (S*,O) for some ~*~~.

But (9) contradicts (1) in view of (7). Hence we must assume

[10) ~(;) - ; t $“(sO) - e“

Consequently, by transition function preservation

Combining (6) and (11) and using (1) we see that

(12) Ii(d$(~),O) = (s)e + ~(i) - ;)

and

(13) fl(6$(G),0) = (s”je” + ~(;) - 6)

whenever E is defined.

R

Observe that (12) and (13) contradict Corollary 1.6.1. Hence, a) and
1’

b) cannot be both false; i.e. a) or b) must be true. c1

We now turn our attention back to the transitional completion

m
algorithm, in the light of the above corollaries and theorems.

Essentially, the algorithm “takes” M and “superimposes” M“ on it,
I

so as to obtain fi(M’). The process of “taking” M is formalized by mq-

ping each sequential state s~S into the sequential state (O,S],e~. The m

process of “superimposing“ M“ on M is formalized by generating the se-

J (S)
quence of sequential states {(i,s)}i=l , to be addedto the state (0,s).

m
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r-
:m.

This sequence corresponds to jumps in M-that are not matched by
<n
<m
b.-

corresponding ones in

All in all, each

{(i,s)}~~~)G S where

mr

M.
k-

m
c%

state SGS induces a sequence of states

J(s)
the map sK((i,s)}i=O is obviously injective.

If M3M- to begin with, then all

jumps in M, and the transitional

jumps in M’ are already matched by

completion algorithm reduces to

relabeling M to fivia the map SI+-(O,S). This fact is formalized as

follows.

Theorem 1.6.4

Suppose G(M)3G(M-) and let M“ %(M”). Then G(V) is TM-DEIS

isomorphic to G(M).

Proof

Consider the TC-DEIS isomorphism (i,fi,i)of Theorem 1.6.1.

Since GAG, it follows from Algorithm 1.6.1 that eJ(s) = O for

all s~S. Hence, J(s) = O for all s~S. Consequently, ~ = {(0,s): sES1.

Furthermore, ~(O,s) = t(s) for any (O,S)GS. The map fireduces then to

(1) fi((o,s),:) = (s,:), V(o,s)e;, Vo s: < Z(o,s)

Thus we can define ti:~-=-S by

(2) ti(o,s) 3S

and~ is clearly subjective. Moreover,

(3) i((o,s),:) = (%(0,s),:), v(o,s)e~, Vo s : < :(0,s)
,

Hence by Theorem 1.5.2, (3) implies that (i,fi,i)is a TM-DEIS isomor-

phism as was to be proved.

❑
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The transitional completion operation can be viewed as a “binary
I

operation” acting on pairs of IM morphic DEVSS. As such, it is inher-

ently asymmetric, because it depends on the direction of the underlying 1’

IM-DEVS morphism. Actually, if we commute

could be undefined, since the existence of

direction does not guarantee its existence

Consequently, we speak about the completion

on the morphic preimage with respect to its

It is possible, however, to generalize

the operands, the operation

a IM-DEVS morphism in one

in the other direction.
E

operation as being performed

morphic image. I

the completion operation

I
to a full-fledged binary operation on the class of DEVSS, by disposing

altogether of the dependence on an underlying IM-DEVS morphism. We
1

use the term “parallel composition” to suggest the heuristic content

of the operation. Intuitively, the two operand DEVSS give rise to R

their “parallel composition DEVS” by letting them run concurrently from

1
any two initial states under any two input segments of equal length.

The resulting

does, so that

superposition

Formally,

DEVS undergoes a jump whenever either of its operands
I

the state trajectory, as far as jumps are concerned, is a

of the operands’ trajectories. E

we define

Definition 1.6.2

LetM= (X,S,Y,k,d,A) andM’ = (X”,S’,Y”,S’,6’,A”)be any two DEVSS.

The para22e2 composition of M and M4 [denoted M@M’) is a DEVS

M* = (X*,S*,Y*,~*,6*,A*) where

a) X* ~ ((XU{$I})X(X”U{$})) - {($,$)}

b) S* $!QxQ’

A
c) Y* = YXY”



M **((s, e), (s”, e-)) ~ min{t(s)-e,$’(s”)-e”}

e) 6* is defined as follows. ,

I e.1) VS* = ((s,e),(s”,e”))CS*,

~$((s,e),(s-,e-)) 4

[
((d@(s),O)j(s’,e 0 + *(S))), if S(s)-e t *“(s”)-e’

{

((s,e +’$”(s’) ),(6~(s-) ,0)), if *(s)-e > %“(s”)-e”

(((6$(s),O), (6~(s”) ,0)), if $(s)-e = &-(s”)-e”

e.2) VS* = ((s,e),(s’,e”))ES*, VOSe* t %*(s*),

VX* = (Y,?)ex’,

6M((s*,e*),x*) !!

(((tiM((s, e + e*), Y), O), (s”, e’ + e*)), if x* GXX{~}

{
((s,e + e*), (6~((s’,e” + e*),E”),O)), if x* C{$}XX”

[

((6M((s, e + e*), Z),O),(6fi((s”, e” + e*), Z’),0)), if

f) V(s*,e*) = (((s,e),(s”,e-)),e*)EQ*,
..

1 A*(s*,e*) = (A(s,e+ e*),A”(s”,e’+ e*)) ❑

m It is not difficult to see that if G(M) and G(M”) are IM-DEIS

8

morphic, then G(MQM’) subsumes G(M(MO)) in the sense that there is a

TM-DEIS morphism from the former to the latter. The difference between

I fi(M’)and M@MJ in this case, is simply a matter of viewing the same

phenomenon from different angles. In the process of creating fi(M”),

B M is viewed as operating on M“ via the completion operation. This

1
asymmetry is not required to obtainM@MO, and both DEVSS are considered
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as operands.

Although, we shall not engage here in a detailed discussion

properties of the parallel composition operation, we point out a

number of observations.

First, the @operation is associative, provided equality of

M“ is defined as the existence of an invertible TM-DEIS morphism

between G(M) and G(M”).

Second, the @operation is commutative in the same sense of

equality.

is a

Third, if M* = M@M”, then M*3M and M*~M”.

Finally, we point out that a finite parallel composition ~~DMa

of the

E

M and

special case of a DEVN whose components {Ma}a CD do not interact.

In other words, the “topology” (influence graph)

tion reduces to a collection of isolated nodes.

The ability to describe a DEVS M as a DEVN,

ability to represent M as a parallel composition,

simplification of the system under investigation.

of a parallel composi-

E.
and in particular the

entails a conceptual R

B,,..
m
I
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1.7 Standard Covers

In this section we specialize the concept of transitional covers

and discuss some of the resulting properties. The specialized transi-

tional covers considered are the so-called standard covers, exhaustive

covers, minimal standard covers and exhaustive standard covers. These

involve covering relations between a DEIS G(M*) and two other

IM-DEIS morphic DEISS G(M) and G(M”). It will be shown that the

exhaustive standard cover and the minimal standard cover are equivalent

concepts which are embodied in a canonical manner by G(h), where

iii ti(M”), In the sequel, we think of the specialized covers as

running not only between DEISS but also between the underlying DEVSS.

Our starting point is

‘Definition 1.7.1

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”) and

let M* = (X*,S*,”,**,6*,●) be a state-DEVS.

G(M*) is called a standard cozxw (abbreviatedSC) of G(M) and

G(M-) if G(M*) satisfies the following:

a) G(M*)J G(M) via a TC-DEIS state-isomorphism (i,h’).

b) G(M*)CIG(M”) via the TC-DEIS state-morphism

(g**,h**) ~ (i,h*)o(g,h)= (g,hoh*) . c!

The relations among the maps of Definition 1.7.1 are depicted in

Figure 1.7.1.

Conclusion 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”)
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1

(i,h*)

=

(g,N

Figure 1.7.1: Relations among the Maps of the Standard
Cover Concept.

.
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and M* ~ fi(MO),then by Theorem 1.6.1 G(M*) is a SC of M and M’ via

(i,h*) ~ (i,~) and (g**,h**) ~ (i,~)o(g,h)

where fiis defined in the proof of Theorem 1.6.1. c1

Definition 1.7.2

Let M* = (X*,S*,”,G*,6*,● ) be a state-DEVS. Let (g,h) be a IM-DEIS

state-morphism from G(M*) to G(M) with domain @~, and let (g”,h’) be a

IM-DEIS state-morphism from G(M*) to G(M-) with domain ~.

G(M*) is called an exhaustive cover (abbreviatedEC) of G(M) and

G(M”) if

a) ~u~ = Q*

b) h(s*,e) = (s,0)GQ or h’(s’,e) = (s”,O)~Q” ~ e = O

for any (s*,e)~Q* c1

If h(s*,O) or h“(s*,O) are undefined, then the logical value of the

corresponding disjunct in b) is ‘false’. Notice, however, that a)

guarantees that there is no q*&Q* for which both h(s*,O) and h“(s*,O)

are undefined. Consequently, every jump in M* can be matched by a

jump in M or M’, so that the jump matching is exhaustive. Conversely,

M* covers both M and M“ due to condition b).

Definition 1.7.3

A DEIS G(M*) is an ex?zaustzke standard cover (abbreviatedESC) of

two DEISS G(M) and G(M’), if G(M*) is both a SC and a EC of G(M) and

G(M’) via the same maps. (See Figure 1.7.1).
u
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Conclusion 1.7.2
“I

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M’) and

M* ; fi(M’),then G(M*) is a ESC of G(M) and G(M”) by Theorem 1.6.2 H

and Corollary 1.6.1. ❑

Theorem 1.7.1
E

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M’). Suppose

that G(M*) is a ESC of

(i,h’),and the TC-DEIS

respectively. Let h =

G(M) and G(M’) via a TC-DEIS state-isomorphism a

state-morphism (g**,h**) ~ (i,h*)o(g,h)

(~,$.,s,~,~,”) be a state-DEVS and suppose that 1

(i,fi’)is a TM-DEIS state-isomorphism from G(M*) to G(V).

Then G($l)is a ESC of G(M) and G(MO).

Proof

Refer to Figure 1.7.2. Define a lM-DEIS state-isomorphism from

G(ti)to G(M) by

(1) (i,t) ~ (i,fi*)o(i,h*)= (i,h*ofi*)

Next, define a IM-DEIS state-morphism from G(fi)to G(M’) by

(2) (i,fi)~ (i,fi)o(g,h)= (i,fi*)o(i,h*)o(g,h)= (i,fi*)o(g**,h**)

Clearly, (i,fi)is a TC-DEIS state-isomorphism as a composition of two

TC-DEIS state-isomorphisms, and (i,fi)is a TC-DEIS state-morphism as a

composition of two TC-DEIS state-morphisms (see Theorem 1.4.3).

We conclude that G(fi)is a SC of G(M) and G(M”), and it remains to show

that G(h) is exhaustive.

Obviously fi-l(Q)U~-l(Q”) = ~, since fi-l(Q)= ~.

From the TM-DEIS state-isomorph’ism(i,fi’)we have (see Theorem 1.5.2)

(3) (;,e)e~ ~ fi’(~,e)= (s*,e)GQ* for some s*GS*.
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= (i,

(i,;) =

fi*)o(i,h*) = (i,fi*)o(g**,h**)

G(M) (g,h) G(M”)

?

Figure 1.7.2: Relations among the Maps of Theorem 1.7.1.
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R
Since G(M*) is a ESC of G(M) and G(M”), for any (s*,e) eQ*

E
(4) h*(s*,e) = (s,O)e Q or h**(s*,e) = (s”,O)EQ” s e = O

Setting (3) in (4) yields for any (~je)~~ i

(5) h*(h*(;,e)) = (s,0)6Q or h**(~*(5,e)) = [s”,O)EQ” ~ e = O

Finally, (5) is equivalent by (1) and (2) to B

(6) fi(~,O)= (s,O)GQ or fi(~,O)= (S-,O)GQ” ~ e = O
tl s

Definition 1.7.4 i

Let (gjh) be a IM-DEIS morphism from G(M) to G(M”). Let G(M*) be

a SC of G(M) and G(M”) via a TC-DEIS state-isomorphism (ijh*) and a ~

TC-DEIS state-morphism (g**,h**) ~ (i,h’)o(g,h)respectively.
D

We say that G(M*) is a minimal standard cover (abbreviatedMSC) of

G(M) and G(M’), if for any state-DEVS V =(~,$,=,~,$,0) such that G(V) is I

a SC of G(M) and G(M-) via any TC-DEIS state-isomorphism (i,fi)and

the TC-DEIS state-morphism (~,~) ~ (i,fi)o(gjh), we have that G(V) B

covers G(M*) via the TC-DEIS state-morphism (~*,fi*)= (i,fi)o(i,h*]-l.n
‘1

The relations among the morphisms of Definition 1.7.4 are depicted

in Figure 1.7.3.

Theorem 1.7.2
“m

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”). Let

G(M*) be a ESC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h’) I

and the TC-DEIS

Then G(M*)

state-morphism (g**,h**) = (i,h*)o(gjh) respectively.

is a MSC of G(M) and G(M”). E

1
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Proof

I
Obviously G(M*) is a SC of G(M) and G(M”) via (i,h’) and (g,hoh’)

respectively, by definition of ESC. B

It remains to show that G(M*) is minimal. Following Figure 1.7.3,

letfi= (~,~,o,$,;,o)be any state-DEVS such that G(fi)is also a SC Of i

G(M) and G(M”) as follows,
I

a) G(fl)3G(M) via a TC-DEIS state-isomorphism (i,fi)

b) G(f))3G(M’) via the TC-DEIS state-morphism I

(;,;) i (i,fi)o(g,h)= (i,hofi).

We show that G(@ 3G(M*) via the TC-DEIS state-morphism

(~*,fi*)4 (i,fi)o(i,h*)-l= (i,h*-lofi). 1

Now, (~”,fi’)is a TC-DEIS state-isomorphism as a composition of TC-DEIS

state-isomorphisms.

Suppose that

(1) fi*(ii,6)= (s*,O) GQ*,

Equivalently

(2) h*-l(fi(&:)) = (s*,O) eQ*.

Since G(M*) is a ESC of G(M) and G(M’) we

[3) h*(S*,O) = (s,0) for some sCS

or

(4) h**(s*,())= (s”,0)

must hold.

Suppose that (3) holds.

of (2) this gives

(5) h*(h*-l(fi(~,;)))=

while the right side of

(6) h*(s*jO).

for some s“ES’.

Then premultiply

fi(:,:)

(2) becomes

have by definition that
I

(2) by h*. For the left side



Equating (5) and (6) and

[7) ii(;):)= h*(s*,O) =

But G(fi)YG(M) via (i,fi)
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<“2
r-
wl.-

applying (3) yields <e
<fl
,-

(s,O)EQ ,for some SGS.
.T,
b-
rr

so that
r%

Suppose that (4) holds. Then premultiply (2) by h**. For the left

side of (2) this gives

(9) h**(h*-l(fi(i,~))) = h(h*(h*-l(fi(:,&))))=

while the right side of (2) becomes

(10) h**(s*,O).

Equating (9) and (10) and applying (4) yields

(11) fi(~,&)= h**(s*,O) = (s-,O)~Q’ for some S-ES”

But G(V) 3G(M’) via (~,~) so that

We conclude from (8) and (12) that G(h) ~G(M*) as required. c1

I
Corollary 1.7.1

If (g,h) is a IM-DEIS state-morphism from G(M) to G(M”) and

i
M* ~ fi(M”),then G(M*) is a MSC of G(M) and G(M”.),since by Conclusion

1.7.2 G(M*) is a ESC of G(M) and G(M”). U

I
Furthermore, the following theorem shows that fi(M’)is canonical

in the following sense.

Theorem 1.7.3

9 Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M”),and let
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Then G(M*) is a unique MSC of G(M) and G(M”) up to a TM-DEIS state-
R

isomorphism.

1

Proof

A-
Refer to Figure 1.7.3 assuming that M* = M(M”),and that G(h) is

an arbitrary MSC of G(M) and G(M’).
I

Since G(M*) is a MSC of G(M) and G(M’) by Corollary 1.7.1, it

follows from Definition 1.7.4 that GAG via the TC-DEIS i

state-isomorphism (~*,fi*)~ (i,fi)o(i,h*)-l.

Since G(h) is a MSC of G(M) and G(M”), it follows from Definition 1

1.7.4 that GAG via the TC-DEIS state-isomorphism

(Q*,fi*)-1Q (i,h*)o(i,fi)-l.

Consequently, M* and h satisfy the conditions of Theorem 1.5.6,
I

from which it follows that G(M*) and G(i) are TM-DEIS state-

C’1isomorphic.

1
Finally,+we prove the following equivalence.

~
(

Theorem 1.7.4

Let (g,h) be a IM-DEIS state-morphism from G(M) to G(M’). Let I

G(M*) be a SC of G(M) and G(M”) via a TC-DEIS state-isomorphism (i,h’)

D
and the TC-DEIS state-morphism (g**,h**) ~ [i,h*)o(g,h)respectively.

Then

a) G(M*) is a MSC of G(M) and G(M”)

iff

8

b) G(M*) is a ESC ofG(M) and G(M-).
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Proof

( ~ ) Assume that G(M*) is a MSC of G(M) and G(M’).

Define fi= fi(M”)to be the completion of M relative to M“.

By Theorem 1.7.3, G(M*) is TM-DEIS state-isomorphic to G(fi).But

the latter is known to be a ESC of G(M) and G(M”) by Conclusion 1.7.2.

Furthermore, by Theorem 1.7.1 the ESC property is invariant under

TM-DEIS state-isomorphisms. Consequently G(M*) is an ESC of G(M) and

G(M’).

G(M)

(~ ) Assume that G(M*) is a ESC of G(M) and G(M”).

It immediately follows from Theorem 1.7.2 that G(M*) is a MSC of

and G(M”). ❑

Conclusion 1.7.3

Theorem 1.7.4 shows that the concepts of ESC and MSC are equiva-

lent.

Moreover, each of these concepts is equivalent to fi(M’)up to’

TM-DEIS state-isomorphism. •1

Conclusion 1.7.3 asserts that ESC and MSC are two equivalent

- ~ il(M”).properties that characterize M Thus G(h) is a canonical ESC

and MSC of any IM-DEIS state-morphic G(M) and G(M’),

ESCS and MSCS are mutually TM-DEIS state-isomorphic,

fl(M”)is one of them.

We can also think of G(fi)as the representative

since all their

and in particular

of the set of all

ESCS or MSCS of G(M) and G(M”), whenever G(M) and G(M”) are IM-DEIS

morphic. This is so, because the IM-DEIS state-isomorphism relation is

clearly an equivalence relation.



90

Finally, the concepts of ESC or MSC induce on the class of DEISS
I

a lattice-like structure in the sense that for each pair of IM-DEIS
;!

Emorphic DEISS G(M) and G(M4), the DEIS G(fi)provides a l~u.b+-like

concept.

-tl.u.b is an abbreviation for least upper bound.

R



,9
r-
Wu

CHAPTER 2
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STOCHASTIC DISCRETE EVENT SYSTEMS

2.0 Introduction

I
The stochastic counterparts of deterministic discrete event

systems are stochastic jump processes. In a jump process, the system

1

evolves continuously in time and changes states discretely in time.

But while in the deterministic case the time spent in a state and the

s transition to a next state are deterministic functions, in the

1
stochastic case these are random variables obeying stochastic laws.

Our approach would lead us from the deterministic case to the

I stochastic one by adding a statistical-theoretic level on top of the

existing system-theoretic foundations. In the process we extend our

I conceptual framework from deterministic systems to stochastic ones by

I
identifying the stochastic counterparts of the deterministic case

concepts, and by interpreting the statistical-theoreticobjects from a

I system-theoretic viewpoint. A general procedure that takes us from

the deterministic case to the stochastic one may be outlined for dis-

1
crete event systems as follows:

In Section 2.1 we start with a deterministic discrete event

I system specified say at the state-DEVS level. More detailed specifica-

1 tions are also admissible provided they can be translated into the

state-DEVS level. Next, we render it stochastic by informally describ-

D ing its stochastic rules of operation.

I
In Section 2.2 we construct a formal probability space - the so-

called coordinate space - which we take to be the statistical represen-

1
tation of our stochastic discrete event system. A connection between

91
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the original state-DEVS which was our starting point, and the resulting

I
probability space is pointed out in Section 2.3. It involves system-

theoretic representation of the sample space of the coordinate space. I

Each sample point is associated with a deterministic state-DEVS, from
9

which we

models a

The

derive at the DEMS level, a deterministic state trajectory that s

particular sample realization of the stochastic DEVS.

,s
merit of this representation stems from the fact that it yields

sample points which are considerably structured. Consequently, the
8

definition of random variables becomes natural and intuitive, since it

reduces to choosing behavioral frames for each state-DEVS representing I

a sample point. This is discussed in Section 2.4.

R
Moreover, relations among a variety of stochastic DEVSS become

more transparent at the sample space level. Such sample point relations
B

could induce statistical relations among the corresponding u-algebras

and probability measures. When this happens, one may correctly deduce I

properties of one stochastic DEVS from those of a related one, via

I
statistical morphisms. Later on we shall take advantage of such situa-

tions in a queuing network context, through the formal tool ,ofstochas-
1

tic simplifications (of probability spaces), to be described in the

next chapter, and by using the examples of Section 2.5. I

The discussion in this chapter assumes familiarity with the basic

D
concepts of Probability Theory. The reader is referred to standard

texts such as [Dl], [Fl], [F2], [Hi], [Ll] and [Wl] for the relevant

background.
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2.1 Informal Description of Stochastic DEVSS

A stochastic DEVS is a nondeterministic

statistical laws. The stochastic aspects of

cast in terms of stochastic processes, while

DEVS whose operation obeys
b“.”
r~.

5%

operation will be later on

the deterministic ones

will be described from a system-theoreticstandpoint.

We start with a deterministic state-DEVS M = (X,S,*,*,6,0) and

the discrete event paradigm M-c-G(M)~S
G(M) g

enerated by it. (See

Ch. 1 Sec. 1.2). This paradigm gives rise to stochastic discrete event

systems formulated as stochastic DEVSS, which we now proceed to describe

informally.

We think of a stochastic DEVS as starting its operation at time O

from some stochastic full state (s,0) under some stochastic input

segment which is a stochastic composition of generators in O
x“

It is

convenient to give an informal description of the operation of a

stochastic DEVS from a simulation oriented standpoint.

a)

b)

c)

When the system is in an initial state and whenever an external

event occurs, the next external event is scheduled by a

stochastic choice of a generator in $2X.

When the system is in an initial state (s,0) and whenever it

jumps to a new sequential state s, a time advance value ~(s)

is sampled stochastically to determine the duration that the

system will remain in sequential state s.

Finally, whenever the system is about to jump to a new sequen-

tial state, a stochastic decision is made to determine this

new sequential state.

For the moment we can think of the stochastic decision makers as

appropriately related random n~ber generators. Mathematically, these



would be random

with prescribed

analogous roles

Appendix A Sec.
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variables over the same underlying

joint distributions. These random

to the next generator in the m.1.s

A.2) of an input segment, the time

probability space
i

variables play

decomposition (see I

advance function ~,

and the transition function & ,respectively. They also generate the

underlying probability space, so that all observations of a stochastic
I

DEVS become random functions over that space. We assume, however,

that the generating random variables are all real valued. This requires 1

all sequential states and all external events to be coded by real

9numbers.

In the next section we shall map the underlying probability space
B

above into a probabilistically equivalent one, in a canonical manner.

The term “probabilistic equivalence” of probability spaces has here I

the following meaning.

Definition 2.1.1

Let S = (Q,A,P)

say that S and S“ are

9

and S“ = (n”,A-,P”) be probability spaces. We

(probabilistically) equivalent if there is a 1

bijective map h:A-A” such that

VAGA, P-(h(A)) = P(A). D

The aforesaid mapping procedure will yield a constructively speci-

fied probability space called the coordinate probability space. This

new probability space will constitute the formal statistical represen-

tation of our informal DEVS, or for that matter, of any stochastic 9

discrete event system, at any level of informal description. The

I
procedure is sufficiently general to be extended to general stochastic
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1

systems, so that the forthcoming

stochastic discrete event ones.

In going from deterministic

<.
,,,*?..:.,...,,. q.,.,,

discussion neeci ... , %c
s“

systems to stochastic ones, we shall

c=

retain our original system-theoretic orientation. However, the

deterministic case definitions will have to be modified for the stochas-

tic case, and recast in probabilistic terminology. We now outline how

our underlying conceptual framework may be extended from deterministic

systems to encompass stochastic ones.

Stochastic systems model those systems whose governing laws are

~luncertain~’to the modeler. This uncertainty results from fragmentary

knowledge which is insufficient to determine those rules. The missing

factors needed to account for the system’s operation are aggregated as

“uncertainty”, llrandomnesslior ‘fnondeterminism”and quantified as

probabilities.

In other situations, the laws governing the system’s operation are

too complex to describe or compute, and a stochastic model is chosen to

describe a simplified version of the system at the cost of a certain

loss of information.

In any

probability

structure.

event, a stochastic system is formally represented by

space S = (.fi,A,P)which captures its stochastic state

The objects in S have the following interpretation:

1. The sample space Q is a set of outcomes. Each outcome u

represents a particular deterministic sample history obtained

from some simulation run of the system. Q stands for all
,

conceivable outcomes of such runs. Any specification of ueSl

is admissible provided all specifications are mutually related

in a one-one manner. In many cases, u can be represented by a
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determ. ~stem or an appropriate state trajectory which
B

model the system history m, and SIthus becomes a set of

systems or state trajectories respectively. I

2. The u-algebra A is a set of events (ensembles of outcomes) for

which probabilistic information is available. Since informa- D

tion regarding stochastic systems is cast in probabilistic

1
terms, A describes the scope of such available information.

3. The probability measure P is a set function from A into [0,1]
I

which quantifies the uncertainty of events in A. P(E) is

interpretted as the chance that the ensemble of histories E, I

will indeed occur.

Statements about behavioral aspects of stochastic systems are cast

in terms of events describable by random variables over S. The
I

probabilistic information embedded in A allows us to quantify the

uncertainty of such statements. In particular, observations of a I

stochastic system in a certain behavioral frame emerge as stochastic

I
processes over S.

Finally, morphisms among stochastic systems become measure preser-
1

ving transformations between pairs of

chapter, this approach would allow us

simplification from the deterministic

probability spaces. In the next

to extend the concept of system

case to the stochastic one.

B

. 1

R

9

D
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2.2 The Coordinate Probability Space
<m
<m
l.-

The construction of the coordinate probability space is a standard *-
,T

rm
m

procedure in Probability Theory (cf. [CL1], [Dl] and [Wl]).

The starting point is a family of finite dimensional distributions

~= {Fe ....3 (Yp...,Ynl: 813....enee and neN}
1’ n

where ~ is some index set and N is the set of natural numbers+

We require F to satisfy two regularity conditions:

1) Consistency viz.

li.mFe e (Y~,*”*$Yn-l>Ynl= ‘cl,,.,,en ~(Y1,...YnJ
y~cn l’”””’en.l’ n

and

2) Symmetry viz.

’01,....O (Yl>O@”sYnl = ‘e. e (Y.jl>-Oo,Yil
n S***>

11
i n
n

where (Oi ,...,ei ) is an arbitrary permutation of (O1,...,On).
1 n

In this case Kolmogorov showed (see [CL1] Sec. 3.3) that there is

a probability space S = (Q,A,P) and a stochastic process Y = {Ye}eGQ

over S such that for any O1,...,OnG@ and any n~N

FYe ,...,Ye %’ “.”~ynl=Fe
1’

....O (Y~$.O.,Ynl ●

1 n
n

Following [Dl] we term a probability

coordinate probability space induced

space S thus constructed - the

by F.

In our case, the family of finite dimensional distributions F will

be given a priori semantics in terms of the informal stochastic DEVS of

the previous section. This would make the construction procedure of

the coordinate probability space a rather intuitive one.
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For our case we require that @ = {l,2,3,4}xN. We distinguish in

9

F the following types of distributions:

a) A sequence {Fl j}~=l, later on the distributions of the j-th
9

external event.

b) A sequence {F ~
2,j~J=l’

later on the distributions of the length

of the j-th time interval between the j-th and j+lst external

events.

c) A sequence {F .}:
3,J J=l’

1ater

sequential state into which

d) A sequence {F ~ later
4,j}J=l’

B
on the distributions of the j-th

the system evolves. 1,

on the distributions of the j-th

I

value of the time advance function.

We remark that the above interpretation reflects mostly modeling B

situations where a distinction between the “stochastic system” and its

I
“stochastic environment” is essential. In many cases the “stochastic

environment” can be lumped into the state structure to yield an
I

“autonomous stochastic system” thus eliminating distribution types

a) and b). 1“

when a higher level description of a stochastic DEVS is given>

the semantics of the distribution functions in F should be assigned in
R

terms of the description employed. Indeed, when we particularize to
I

queues and queuing networks, the two comments above will

However, the mathematical construction of the coordinate

space is free of any interpretations of F, and moreover,

be invoked.

probability I

the procedure

we are about to describe is sufficiently general and representative to

serve as a prototype or guide lines for the class of stochastic discrete
9

event systems.

I

.9
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c=
We now proceed to describe in some detail the construction of the :2

<-?
r-

coordinate probability space S = (Q,14,P)of an informal stochastic DEVS.
:W
W!
<m
b-
.’l?
M-
r-r-

1) Construction of the coordinate sample space ~:
C=

Intuitively, a sample point represents the outcome of a statistical

“experiment”. In our case, the experiment is “simulating!’an informal

stochastic DEVS,and the outcome is the resulting sample

tained by such a “simulation run”. In order to capture

content of the sample point concept, we define a sample

as a countable aggregate u = {wi j}i=~ j=; where
9

{0 ‘~ {aj}j=~l,j}j=l

{U ‘~ {bj}j=~2,j‘j=l

history ob-

the intuitive

point tie$l

Each of the sequences {aj], {bj}, {cj} and {dj} is ‘areal sequence

representing a certain realization compatible with the interpretations

given in a), b), c) and d) respectively. Thus, {aj} represents a

particular sequence of external events to occur in a particular sample

history of our informal stochastic DEVS, and {bi} represents a particu-

lar sequence

stands for a

graphically,

the origin.

J

of inter-event intervals. Consequently, ({aj},{bj})

particular realization of the stochastic input segment;

({aj},{bj}) defines some infinite pulse train starting at

In a similar manner ({cj},{dj})represents a particular

trajectory of the sequential state; graphically, ({cjl,{djl) defines

some infinite step function starting at the origin.
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Note that {aj}, {bj}, {cj} and {dj} jointly (i.e. the sample

point u represented by the above) do indeed specify a sample history

that could conceivably be obtained from a trial run of a stochastic

DEVS. At this juncture we repeat our previous remark that in many

cases, the “stochastic input” is lumped into the “stochastic state”

and the sample point u reduces to the aggregate ({cj},{djl),i.e. to

specifications of autonomous sequential state trajectories.

We point out again that sample histories of a stochastic DEVS can

be specified at other levels, provided the input and state trajectories

are derivable from them. This point will

queuing context.

Generally, in order to qualify for a

be later illustrated in a

sample space of a stochastic

DEVS, $2has to consist of sample points u, each being a countable

aggregate of real numbers that is adequate to specify a particular

sample history.

II) Construction of the a-algebra A:

Let B be the BoreZ fieZd on the real linelR, i.e. the minimal

u-algebra generated by the intervals oflR. Likewise,

BoreZ fieZd on the n-dimensional Euclidean space llln.

A set CCSl is called a cyZinde~ set if C has the

c= {Men: (w. Llli ,j )eB}
ll$jl‘“i2,j2’”””’ n n

for any neN and any BG13n.

let Bn be the

form

Consider the collection C of all cylinder sets in $2,and let CS(C)be

the minimal o-algebra generated by C.
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III) Construction of the probability measure P:

be the probability measure induced on 13nby the joint distribution
L%m
<s6
F-

Fel, en
in F. Since the map Fe ~ l--i=-Po is injective

.*.,
1’
.... ....

n 1’ ‘n

M-

rr
w

(see [Wl] p. 7), it follows that F induces an equivalent family of

probability measures P = {P6 0 GG, neN}.
● ...

1’ On
: ‘l’”””’n

Now, the cylinder sets in C constitute an algebra. Moreover, this

is the minimal algebra generated by the cylinder sets (see [Wl] p. 7).

Define a probability measure P on the u-algebra u(C) as follows. Let

c= {(l)e.(1:((,0. )eB} be a cylinder set and take
ll,jl‘“””’”in,jn

‘(il,jl),.o.,(in,jn)
‘sP.

f
Define P(C) ~ dP .

(ll,jl),....(in.jn)”
B

Now, by Carathiodory’s extension theorem, P can be extended from C to

a(C) in a unique way (see [Wl] p. 3).

A—
Finally, let ~ = o(C) be the completion of o(C) with respect to P,

and let P be the completed version of P.

Definition 2.2.1

The statistical ~epresentation of an informal stochastic DEVS is

the coordinate probability space S = (fl,A,P)induced by the informal

stochastic DEVS and whose construction is outlined in I), II) and III)

above.
•1

The term stochastic d<screte event system will refer to any infor-

mal description of a system that is modellable as an informal stochastic
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DEVS, along with the coordinate probability space induced by it. A

D

further justification for this terminology is provided in the next

section.

2.3 System-Theoretic Representations of Coordinate Sample Points

Our next step is to make the system-theoretic aspects of the

coordinate sample space more direct and more explicit. To do this we

first associate with each u60 a state-DEVS M(u). Finally, we derive

from it an infinite state trajectory STRAJ that serves as a system-
q)n

theoretic representation of the sample queuing history u. The deriva-

tion follows the paradigm u_M(w)_G(M(u))K SG(M(ullKST~q ,n . B
low

(See Ch. 1 for relevant background).
(

({aj}~~bj}~{cj}}{dj})be any stiple point in $2. Define
I

Let u =

the associated state-DEVS M(w) = (XU,SU,=,*U,6U,*) as follows:

Xu ~ {aj:j = 1,2,...}

S4 {(j,cj): j = 1,2,...}u

tu:Su~(O,m] is defined by

~w:QuX(XuU{$})+Su is defined by

6~,o(j,cj) Q (j+l,cj+l)

and

D

d~,~(((j,cj))e’l~ak)~ (j+l,cj+l)

Let nu be the infinite input segment n ~ .6 (a.)
u

and let
j=l J bj

qm 2 ((l,C1),O). Following the aforesaid paradigm all the way to the

9
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DEMS level, it is ,thenpossible to define the infinite state trajectory

STRAJ in ‘anobvious way. It is
qu9~u

uI+STRAJ is injective,and this
qu>~u

aggregate representation of u by the

trajectory STRAJ
qu$nu “

easy to see that the map C=
:Z
(7

fact enables us to replace the r-
:W

46

<.?7

appropriate (infinite) state *-.
VT

Sometimes, it is more convenient to represent u

DEVS by choosing M(u) to be an autonomous state-DEVS

input is built into its state structure. To do this

M(u) = (Xu,Su,=,gu,6u,0) as follows:

XAQ

S“ ~ {(m,am)}~=lx((),mlx{(n,cn)}~=lx(O~ml
u

. .

&u”:Su-(O,CO] is defined by

A
~u((m,am),ra)(n,cn),rc)= min{ra,rc}

~u:QuX{$}-Su is defined by

6~,$((m,am),ra,(n,cn),rc)~

1

((m+ l,am+l)~bm+l,(n,cn),rc - ra), ifra f

((m,am),ra - rc,(n + l,cn+l),dn+l), ifrc c

Gflas a state-

whose external

we define

r
c

r
a

(((m + l,am+l ),bm+l,(n+ l,cn+l),dn+l), ifra= rc

The state trajectory representing w is STRAJ where
quJ~u

qu ~ (l,cl) and nu ~ $W.

In the sequel we shall interchange the aggregate representation,

the autonomous state-DEVS representation and the state trajectory repre-

sentation of u as the need arises. We are justified in doing so, because

all three representations are mutually related in a one-one manner.
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It should be born in mind that although these representations I

describe time invariant systems in the system-theoretic sense, the

state process of the stochastic system as represented by the coordinate 9

probability space is not necessarily time invariant in the statistical
R

sense.

A system-theoretic representation of S2has additional advantages, I

aside from making the system-theoretic aspects of stochastic systems

more transparent. In a statistical-theoreticanalysis of such systems, I

the major interest lies in some statistical state process of the system.
[

A standard approach would be to define the state space so as to render

the statistical state process a Markov process. The statistical state
I

would usually coincide with the system-theoretic state or with parts

thereof. Moreover, the Markov property would require in general that I

the “state of the input” (i.e. recent input symbol and elapsed or

I
residual time) be part of the “state process” under consideration.

This fact further makes the autonomous state-DEVS and state trajectory m

representations of we~ rather intuitive conceptualizations. It also

allows us to classify stochastic DEVSS from a system-theoreticview-

point as follows.

Definition 2.3.1 9
Let S = {~,A,P) be the statistical representation of a stochastic

DEVS, and let M(oJ)be the autonomous state-DEVS representation of ue~. 1

Then

a) the stochastic DEVS is Zegit<mate if the set

{uefl: M(u) is not a legitimate state-DEVS] is a null set,
i

i.e. almost all M(u) are legitimate state-DEVSs.

‘9
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I
r-

b) the stochastic DEVS is reguZar if the set
;B
i-
4m
.-

1

{wGQ: M(u) is not a regular state-DEVS} is a null set,
,“r!
w-
rw

i.e. almost all M(u) are regular state-DEVSs.
En

c1

Naturally, we require a stochastic DEVS to be at least legitimate,

1“ in order that sample histories be well defined.

#

Another line of classification is suggested by the intuitive

concept of multiple scheduling. Suppose the user partitions DEVS

I jumps into “types“ which are attributable to various “types” of system-

theoretic events. A multiple scheduling relative to the underlying

i partition takes place when a jump is attributed to the simultaneous

I
occurrence of more than one system-theoretic event. Let us define the

event muZtipZi&ty of a deter~inistic DEVS as the largest number of

D system-theoretic event “types” involved in any jump. Then the event

muZtipZi&ty of a stochastic DEVS is defined as the smallest integer n

I such that the set {oeQ: M(u) has event multiplicity larger than n}

is a null set.

We remark in passing that most queuing systems are modellable by

B stochastic DEVSS which are regular and whose event multiplicity is 1

relative to the natural partitioning of transitions into arrival and

service completion “types”.

u
m

D
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2.4 Random Variables over a Coordinate Probability Space

E“

We discern two main classes of random variables over a coordinate

probability space S = (fi,A,P)representing a stochastic DEVS. The 1

first class consists of random variables, that generate A. The second

1
class consists of all stochastic processes over S and is identified

with the set of all behavioral frames of the underlying stochastic
i

discrete event system.

The generating random variables are formally defined as projection n

functions on G?as follows.

Definition 2.4.1

4c0
Let G = {g. be an aggregate of functions over a

l,j}i=l j=l

coordinate probability space S = (o,A,P).

m

Let each g. .:O-+WR be defined by
l~J I

vu = {o. 4 ‘&Q, gij(”) ‘Uij.l,j}i=l j=l > >

Then G is called the (statistical)generator set of S.
I

a

9

This terminology is justified by the fact that the u-algebra u(G)

generated by G is precisely the one generated by the cylinder sets C. I

In other words A = ~. (See [Wl] p. 39.)

Consequently, the generator set G has a family of finite dimension-
H

al distributions which is precisely the one prescribed by F in Sec.
,,,

1

2.2, viz.

F
g. gi . ‘F(il,jl),. ...(in,jn) “
ll,jl’”””’ n,jn



Indeed, the interpretation of the generator set G is compatible with
<m
<P,
.-”

the interpretation of the joint distributions in F as given in a),
PT
P-l
r7-

m

b), c) and d) of Sec. 2.2. That is,

.
a) gl,j~ J = 1,2,... is the random variable of the j-th external

event.

b) g2,j, j = 1,2,... is the random variable of the j-th inter-

event time interval.

C) g3,j, J = 1,2,... is the random variable of the j-th sequen-

tial state into which the system evolves.

d) g4,j, j = 1;2,... is the random variable of the time advance

assigned to the j-th sequential state.

To sum up, the coordinate probability space was constructed according

to Kolmogorov’s theorem so as to ensure that G generates it and has F

as its family of finite dimensional distributions.

The second class of random variables over S consists of statis-

tical observations pertaining to a certain behavioral aspect of our

stochastic discrete event system.

Definition 2.4.2

Let S = (o,A,P) be a coordinate probability space representing

some stochastic DEVS. Let Y = {Ye}eee be a stochastic process over S.

Finally, let Sy = (~,Ay,Py) be the probability space induced by Y in S

where

Ay~CJ({AEA: A= Y~l(B), eeo, BeB}) andpy~PIAy .

Then Y is called a behavio~al frame of S, and Sy is called the

probab{list-ic frame induced by Y on S.

a

,
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Definition 2.4.3

Let Y = {Ye}eG8 and y“ = {y~}eee be two behavioral frames over

s = (i2,A,P) and S’ = (!n”,A-,P-)respectively, with the same index set

G. Then (Y,Y”) is called a bdwv;oral pair of S and S’. We say that

Y and Y’ are distribution equivalent if they have the same family

‘Y
= Fy. of finite dimensional distributions. •1

Clearly, if (Y,Y”) is a distribution equivalent behavioral pair,

then the probabilistic frames Sy and Sy. induced by them are probabilis-

tically equivalent up to null sets in the sense of Definition 2.1.1.

Notice how the above definitions fit into our conceptual frame-

work. As stated before, the totality of information carried by a

stochastic system is embedded in the probability space representing it.

By the same token, a behavioral frame should focus on a certain behav-

ioral aspect by reducing that totality of information to the relevant

part. Indeed, the o-algebra Ay coarsens the underlying u-algebra A,

as AYcA. The desired effect is achieved because in Sy we are left

with a less extensive u-algebra which can give us probabilistic

information concerning only the stochastic observations of interest.

The most important behavioral frames are the “full state” process

and the “sequential state” process. Whenever they are measurable,

they define continuous parameter stochastic processes whose parameter

is interpreted as time. Most behavioral frames of interest would be

functions of the stochastic state, much as in the deterministic case.

The behavioral frame ~!initialstate of the system” is esPecially

important when a stochastic DEVS is specified through a stochastic

m
B

m

transition structure. In this case, the “initial state” random
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r-’
:$s?

variable is essential in specifying a sample history, while subsequent
cm
~m

states are not, and can be removed from

situation is typical of queuing systems

The definition of functions over Q

l.-

FT

the generator set. This v-,
f~
:s

as will be seen later.

becomes especially intuitive

when the state trajectory representation or the autonomous state-DEVS

representation of $2are used. Such definitions involve a conceptual

“simulation run” of M(u) and observation of a particular aspect of

the trajectories generated by it.

The problems of measurability of such functions (i.e. showing

them to be random variables over S) are basically unchanged. When the

problem arises, a typical technique amounts to showing that the pros-

pective sample ~pace functions can be obtained from the generating ran-

dom variables via “measurable” operations. Loosely speaking, one must

show that the “simulation” and “observation“ operations, alluded to

above> w--e the measurability Of the generator set elements which

are used in the process.

We point out that the scope of behavioral frames, definable on s2,

depends crucially on the representation chosen for ~. While the

aggregate representation contains maximum information, an alternative

representation may incur a loss of information. For example, in

queuing context, if M(u) is a state-DEVS representation of u whose

sequential states keep track of queue length rather than of queue

configuration, then behavioral frames concerning individual customers

(e.g. waiting times) cannot be described, as the necessary information

is lost in the course of the mapping u_M(u). In order to recover

such behavioral frames, we need a more elaborate state-DEVS model that

keeps track of queue configuration and consequently of individual
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customers. Indeed, customer oriented behavioral frames are statis-
1

tically harder to compute, a fact which has an obvious system-

theoretic explanation in view of the increased complexity of the 3

generic M(w) required for the task. These points will be revisited

and demonstrated in the examples of the next section and in Chapter 5. I

We conclude this section by providing a standard reference frame
,.

5
for the class of behavioral frames.

9
Definition 2.4.4

Let !3= (o,A,P) be a coordinate probability space representing e

a stochastic DEVS. Let SV . (~,Ay,Py) be the probabilistic frame

r
induced on S by a behavioral frame Y = {Y6}eee

.-

For any finite subset L = {ii,...,i
IL!

}G@ definef

f3(L)=(IRIL1,BIL],PL) where PL(B) ~ P({ueO: (Y. (u),....(u)e E$})})

IL!
11 llL/

for any BeB . Then the collection B(Y) = {(3(L):LC~ is a

finite subset] is called the BoreZ frume induced by Y. •1

The concept’of a Borel frame merely maps the

induced by each finite subset of random variables

frames whose sample space is always Euclidean and

probabilistic frames

in Y, into equivalent

its u-algebra is

always the Borel one. Instead of dealing with a variety of sample I

spaces and u-algebras of probabilistic frames, we can now deal with

their standard counterparts. Thus, the problem of showing a behavioral i

pair (Y,Y”) with index set o to be distribution equivalent, reduces to
..

I
one of showing that the PL and Pi measures in the corresponding (3(L)

and 6“(L) are identical measures, for any finite Lc@. R

+ILI is the cardinality of L.

E

1
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2.5 Queuing-Theoretic Examples
(“07
,-.
.y

In this section we illustrate the construction of the coordinate
P-
rw
K%

probability space associated with various queuing systems.

Example 2.5.1

A) Informal

Consider

one server in

if necessary.

(Single queue)

description:

a queuing system composed of one service station with

it. Customers arrive randomly and join a waiting line

The service time given to each customer is of random

duration. The line discipline is FIFO (first in first out) and the

line itself has infinite capacity.

The j-th inter-arrival time interval is a random variable Aj with

distribution function FA and the service time given to the j-th
i
J

customer is a random variable Sj with distribution function FS * The
;J

initial line length is a random variable L with distribution function
o

‘LO”
In addition, assume that there is given a family F of finite

dimensional distributions of the random variables {A )rnj j=,, ‘sj}~=~

and Lo which is consistent and symmetric.

B) The coordinate probability space:

To.determine a sample queuing history we need to know an initial

line length of the system, a particular sequence of inter-arrival time

intervals, and a particular sequence of service times given to the

customers. Consequently, a sample point uGO is an aggregate

0. {a ‘?
O,j ‘J=O

= 10 is an initial line length.
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time intervals.

2. {(AI :2,j~J=l = ‘sj}~=~ ‘s a

given to the custdrners,

Next we take cr(C)i.e. the minimal

sets of 0. The family ~ of finite

sample sequence of intei?-arrival

sample sequence of service times

u-algebra generated by all cylinder

dimensional distributioxisis used

to define a measure P on 6(C) as in III) of Sec. 2.2. Finally, a(C)

is completed with respect to P to yield ~ and P is extended

appropriately from u(C) to ~. This completes the construction of

the coordinate probability space S associated with the informai

description in part A). ,

c) The generator set:

The generator set G of S is G’= {L {A.l,{Sj}: j=l,2,...} where()’ J

the elements of G are redefined on S as the appropriate coorciinate

(projection) functions as follows.

Let w = {Wi,j} = ({~o,{aj}~=l,{sj}~=l)be anY sample ~oiritin ~~

Then

The random variables in ~ retain their interpretations as given in

the informal description of part A).

D) System-theoretic representations of L!:

Two representations of !Jvia state-DEVSs will be exemplified.

D



D.1) Define a state-DEVS M(u) =( Xu,Su,=,~u,6@,0) by

s
A
= {(O,n,~):

u
nCN}U{(~,n,r): ~ > O,nGN,O s r < Sn}

A
*@(l,n,r) = r

{

(O,n+ l,m), ifll= 1
6~,+(~,n,r) Q

(1 - ljn + l,sn+l), if 2> 1

{

(l,n,sn), ifl= O
d~,M(((Z,n,r),e),x) A

(1+ l,n,r - e), ifl> O

For double scheduling any composition-type rule is applicable.

This happens when an exogenous arrival and a service completion

occur simultaneously. The state trajectory representation for

u is STRAJ such that
qu)nw

qu = (SO,O) where

A

{

(Ojl,~), iflo = O

‘o =
and no 4.G1

J=l aj “

(~o,l,sl), if lo > 0

D.2) Define an autonomous state-DEVS M(u) = (XU,SU; ,%U,6U,*) by

Xbo
(Al

{(~, (m,ra), (n,rs)):l,m,n~N,Osr < am,O <r K Snla s

A
tu(l,(m,ra),(n,rs]) = min{ra,rs}
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6
A

~,$t, (m,ra),(n,r~))f=

[

(Ij(m + l,am+l),(n,sn)), ifra f r~ and 2= O

(2+ l,(m+ l,am+l),(n,rs - ra)), ifrazrs and~> O

1(O,(m,ra - rs),(n+ l,w)), ifr <rs
a and Z=l

(2- l,(m,ra - rs),(n+ l,sn+l)), ifrs <ra and 2> 1

L(~,(m+ I,am+l),(n + l,sn+l)), ifra= rs

B
Notice, that in the autonomous state-DEVS representation, the case

r = r~ corresponds to double scheduling of events in the state-DEVS
a I

representation D.1).

The state trajectory representation of w is STRAJ such that 9
qua~u

qu = (s.,O) where

{

s
(O,(ljal),(l,m)),if~o= 0

$
‘o

andnu~~m.
i(~oj(l,al),(l,sl)), if~o > 0

cl

I

Following the discussion in the previous section, we see that the

B
state-DEVS representations D.1) and D.2) for ~ precludes customer-

oriented behavioral frames, since M(u) does not keep track of line
E

configuration and consequently of individual customer identity. In

order to attain such behavioral frames, M(w) should be redefined so as I

to preserve that information.

This comment is also pertinent to the following two examples.
I

Example 2.5.2

A) Informal

Consider

9
(Single queue with feedback)

Description: I

a queuing system composed of one service station with

I
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one server in it, and waiting line conventions as in Example 2.5.1.
4m
4m
.F

Customers arrive at the system randomly,
.V,

and after service is completed, ;;
c%

they instantaneously invoke a random desision maker which we call a

decomposition switch. The switch has two readings coded by O and 1.

If the switch indicates O, the customer leaves the system altogether.

If, however, it indicates 1, the customer is instantaneously fed back

to the tail of the line to obtain another service in due time. The

inter-arrival times of exogenous customers, the service times and the

initial line length are random variables with distribution functions

as in the previous example. In addition, the j-th switch reading

(at the time of the j-th service completion) is a random variable Vj

with distribution function Fv . Again, assume that an appropriate

j

family F of finite dimensional distributions is given.

B) The coordinate probability space:

To determine a sample queuing history, we need to know an initial

line length, a particular sequence of inter-arrival times of exogenous

customers, a particular sequence of service times given to customers

and a particular sequence of switch readings encountered by the

customers.

Consequently, a sample point uGS2 is an aggregate

w= {Ui j] 9 (Los{aj}~=~s{sj}~=l${vj}~=l) ‘here9

0. {u
]0

O,j j=O
= 10 is an initial line length.

1. {u ~ = {ajl~=ll,j}j=l
is a sample sequence of inter-arrival

times of exogenous customers.

2. {ill :2,j~J=l = {Sj};=l is a sample sequence of service times

given to customers.
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3. {W : = {Vj};=l
3,j}]=l

is a sample sequence of switch readings

encountered by customers.

The coordinate probability space S is constructed analogously to “1

part B) in Example 2.5.1.
I

c) The generator set: >

The generator set is G = {Lo,{A.}~ j};=l,{Vj$1}, ,=l>ls I

and its elements are redefined on flas the obvious projection functions

with the obvious interpretations.

D) System-theoretic representations of $2:

Let w = (Zo~{aj}~=l~{sj~~=l~{vj}~=l)e~ ad define a sequence

of random variables {Z.}:J J=l
almost everywhere on Clby

rO,ifj=O

{

j ~(u) and Vk(u) = O}, ifj 9 0 and theZj(u) Q
min{k: k > Z.

minimum exists

{ undefined, otherwise

Zj(u) is the index of the j-th O in {Vj(~)}~_l, i.e. in an infinite

sequence of Bernoulli trials.

Let M(u) = (XU,SW,.,*W,6U,’) be a state-DEVS given by

SA
= {(O,n,vn,m):n = Zj-l(u)+l,j~N}U{(l,n,vn,r) : ~,~N,O <r x Sn}

u

tu(l!,n,vn,r)~ r

r
(O,n + l,vn+l,~), if~=landvn=O

6
A

\

~,$(t,n,vn,r) = (1- l,n+ l,vn+l,sn+l), if~> 1 ~dvn = O

(l)n + l,vn+l,sn+l), ifvn = 1
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A

{

(l,n,vn,sn),if~= O
6~,M(((~,n,vn,r),e),l)=

(1+ l,n,vn,r - e), ifl> O

The tie-breaking rule for double scheduling is of the composition

type. The state-trajectory representation of o is STRAJ such that
~uJno

qu = (s.,O) where

~

{

(o,l,vl,~),if~o= O

‘o

(~o)l,vl,sl),if lo > 0

Example 2.5.3

A) Informal

Consider

,

(Queuingnetwork)

description:

Aco
and rI = .@ 1

10 J=l aj “

n

a queuing system composed of m service stations labeled

1,25***Sm each housing a single server, and an infinite capacity

waiting line with FIFO discipline. The initial line length at service

station i is a random variable L. with distribution function FL .
1,0 i,O

Each service station can have a random input stream of customers from

an exogenous source. The j-th inter-arrival time interval to service

station i is a random variable A. with distribution function FA .
l$j i,j

Customers are served at the service stations for random time periods.

The j-th service time given in service station i is a random variable

s, , with distribution function FC . When service is done, each

customer enters a decomposition switch and

regarding the next destination (switching)

j-th switching decision at service station

a random decision is made

of that customer. The

i is a discrete random

variable V. with distribution function Fv . Each V.
ljj

can assume
llj

i$j
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a switching value from the set {0,1,...,m} where a value O means that
B

the customer leaves the system altogether and all other values stand

for service stations in the system. The topology of a queuing net- 1

work may be described by a directed graph whose nodes represent

I
service stations and whose arcs stand for permissible flow paths

(stitchings)of customers. It is often convenient to add to such a
B

graph a fictitious node O which represents the “environment”. The

“environment” can be viewed both as the source of all exogenous I

customer streams as well as the sink of all customer streams that

leave the system altogether.
‘1

In the sequel we shall often discuss the network in terms of its
I

associated graph. As a matter of fact, we use the terms “nodes” and

“service stations” interchangeably, and similarly for the terms “arcs” .R

and “switching decisions”.

As usual we assume that there is given a consistent and symmetric I

family F of finite dimensional distributions for the random variables
I

L. A. S and V. above.
1,0’ I,j’ i,j ljj

B) The coordinate probability space:

To determine a sample queuing history we need to know an initial
B

line length at each node, a particular sequence of exogenous inter-

arrival time intervals at each node, a particular sequence of service B

times awarded at each node and a particular sequence of switching

decisions made at the decomposition switch of each node. Consequently, “’ I

a sample point uGQ is an aggregate

I

where for every i = 1,2,...,m

9
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0. {w : =IioO,i,j}J=l
is an initial line length at service

$

station i.

1, {u }: = {ai j}~=ll,i,j 3=1
is a sample sequence of inter-

$

arrival times of exogenous customers at service station i.

2. {0 : = {Si,j};=l2,i,j}]=l
is a sample sequence of service times

given to customers in service station i.

3. {0 : = {vi j};=l
3,i,j}]=l

is a sample sequence of switching
9,

decisions made at the decomposition switch of service station

i.

The coordinate probability space is now constructed analogously to

part B) of Example 2.5.1.

c) The generator set:

G= {{Li O},{A }W
> i,j j=l’{si,j}~=~’{vi,j}~=fl i = 1,2,...m}

is the generator set and its elements are redefined on G?as the obvious

projection functions, with the obvious interpretations.

D) System-theoretic representation of $2:

A natural way of representing u6Q as a DEVN is as follows.

be a sample point, and define a sequence {Z. .}: lsi<m, of
l,J J=l’

random variables almost everywhere on $2by

[

O,ifj=O

min{k: k > Zi j-~(~) andvi,k(u) # i.],ifj > Oandthe
z
ijj‘u) i

$

minimum exists

Lundefined, otherwise
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DEVN associated with o. N(u) is defined as follows:
I

DQ12
9 ,...,m}

Forlga Sm, Ia ~ {nodes B: there is an arc (a,B) in the I

associated graph]

For l&a Sm, Ma(w) =(X S “,% ,6
a,u’ a,w’ C%,ola,w’“)

is a state-DEVS

given by

((O,n + l,vun+l,~), ifl= 1 andva,n # a
3

9

9

\

(2- l,n + l,va,n+l,sa,n+l), ifl!> 1 andva,n+ a

(l,n + l,v ),ifvan=a .1
a,n+l’sa,n+l $

{

(l,n,va,n,sa,n),ifl= O
6a,@ M(((~’n’va,n’r)’e)’x) A>

(2+ l,n,va,n,r - e), ifl> O

{

if v
113,a’ a,n

=13#t2
z~ ~(-t,n,van,r) ~

9 >
undefined, otherwise

‘D



121

%a~
‘For lSa<m, Jau”, .Qa,uX2 ‘--oSa ~ is defined by,

s

J~,w(((~,n,va n,r),e),Ea) ~
9

{

6~,u,$(~+ lEal - l,n,van,r), if $ae Ea
>

6~,u,M(((~+ lEal - l)njva,n,r),e),x), if $a# Ea and Ea # @

(~,n,van,r - e), ifEa = O
s

Finally, we expand the DEVN N(u) into the state-DEVS ~ (~)

associated with it (see Ch. 1, Sec. 1.1) and we derive the DEMS

‘G(h$+Lo))
(see Ch. 1, Sec. 1.2). ‘

The state trajectory representation of u is STRAJ such that
qu#no

qu = (s.,O) where

‘o = (sl O,...,Sm,o) is defined by
3

0

9
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STOCHASTIC

CHAPTER 3

MORPHISMS AND SIMPLIFICATIONS

3.0 Introduction

In Chapter 2,
I

a conceptual framework for stochastic discrete

event systems was set forth. In particular, Chapter 2 exemplified
I

how a stochastic discrete event system may be canonically represented

in coordinate probability space. I

In this chapter, we extend this underlying conceptual framework

B
to relations among stochastic systems in probability space represen-

b
tation. In accordance with Appendix B, these relations will be

I

collectively referred to as stochastic morphisms; these will give rise

to stochast~c simplifications. Formally, stochastic morphisms are B

described as measure preserving relations between probability spaces.

Such relations are employed, for example, in [Col] in a modeling

context. Since the treatment in this chapter is at the probability

space level, the extension alluded to above goes beyond stochastic

systems, as interpretations of probability spaces are not restricted

to stochastic systems in the sense of Chapter 2.

The organization of this chapter is as follows.

Section 3.1 introduces a class of stochastic morphisms of the

measure preserving transformation type (cf. [Dl] Ch. X and [Hi]

Ch. VIII), - the so-called measu~e p~eseming point morphisms.

Section ’3.2fits stochastic simplifications into the broader

conceptual framework of Appendix B. This section treats the so-called

point simplifications, brought about by measure preserving morphisms.

122

II
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:2!
n
r-

In addition, Theorems 3.1.1 and 3.2.1 provide sufficient
:m
CA
<P,

conditions that establish a

to preserve the probability

supply a basis for reducing

l.-

point simplification and guarantee it VT
M-
rr

law of behavioral frames. These theorems
E%

the problem of “stochastic” preservation

of stochastic processes to that of “deterministic” preservation of

their sample functions.

Finally, Section 3.3 discusses the effect exerted by point

simplifications on behavioral frames.

As in the previous chapter, the discussion in this chapter

assumes familiarity with the basic concepts of Probability Theory.

The reader is referred to standard texts such as [Dl], [Fl], [F2],

[Hi], [L1] and [Wl] for the relevant background.

3.1 Stochastic Morphisms

Throughout this

generality, that all

chapter we shall always assume, without loss of

probability spaces under consideration are

complete.

The following definition isolates a class of stochastic morphisms.

Definition 3.1.1

Let S = (~,A,P)and S’ = (fl”,A”,P’)be probability spaces.

Let H:.fl-~” be a subjective point mapping satisfying:

a) VE’&A”, H-l(E’)eA

i.e. preservation ofevent5 .

b) VE”GA’, P“(E’) = P(H-l(E”))

i.e. preservation of measure .



Then H is called a
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measure preserving point morphism (abbreviated

m.p.p.m), or simply a point morphism from S to S“.

Measure preserving point morphisms are variants of measure

preserving point transformations (cf. [Dl] p. 453 and Sec. 3 of

Supplement; [Hi] Ch. VIII). Observe the simplification effect

implicit in this class of stochastic morphisms (see Appendix B for a

formal discussion of the simplification concept). A complexity

o

reduction isachieved at two levels. At the sample space leve~ H lumps

Isample points, due to the fact that H is subjective but not necessarily

injective. At the u-algebra level, H-l(A’) is a sub-u-algebra of A
1

by a) in Definition 3.1.1, so that the original event information in

A may be reduced. The preservation effect is described by condition I

b) as a measure preserving effect.

Note also that conditions a) and b) of Definition 3.1.1 do not “I

generally hold in the other direction. For one thing if EGA then
I

the m.p.p.m definition does not guarantee that H(E) eA’. Even so, a

probability preservation relation P(E) = P-(H(E)) does not necessarily 1

follow,due to the inclusion ECH-l(H(E)). To illustrate this point

consider I

Example 3.1.1

Take $2Q [0,2], fl”~ [0,1],and let A and A“ be their respective

Lebesque measurable sets.

{

O, if,Ec[O,l] I

Define P(E) ~
Lebesque measure of E, otherwise

9
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and define P- to be the Lebesque measure. Finally define a m.p.p.m

H:[0,2]-c9[0,1]byH(u) ~ w mod 1.

Take N = [0,1]. Then, P(N) = O,but P“(H(N)) = P’([0,1]) = 1.
c1

The following definition gives a standard hierarchy of point

morphisms.

Definition 3.1.2

Let H be a m.p.p.m fromS = (Sl,A,P) to S’ = (Q”,A-,P”) .

a) If H-l(A’) = A, then H is called a measure preserzhg

homomo~hism (abbreviatedm.p.p.h), or simply apo<nt

homomorphism from S to S’.

point

b) If in addition H is bijective, then H is called a measure

preserving point isomorphism (abbreviatedm.p.p.<), or simply

a point isomo~hism from S to S’.

A simple instance of

real random variable with

a measure preserving point

a Borel measurable range.

❑

morphism is a

Example 3.1.2

Let Y be a (real) random variable over a probability space

S = (!d,A,P),such that the range of Y is

probability space S“ = (s2”,A’,P’)where

$2”QY(Q)

A“ is the Borel field over fl”

Borel measurable. Define a

P’
A
= Py is the probability measure induced on A“ by the distribu-

tion of Y.
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Define H:~--c-K2-by H fiY. H is subjective by definition of Q“.
I

Moreover,

a) VE”eA”, H-1(E”) = {u: Y(u) eE”l GA R

b) VE”GA’, P-(E-) = PY(E’) = P{o: Y(u) eE”] = P(H-l(E”)).

9
We conclude that Y is a m.p.p.m from S to S’.

Two more examples of point morphisms follow.

Example 3.1.3

D

Let S = (o,A,P) be a probability space and let ~be a sub-u-algebra

of A. Take S“ = (~”,A”,P”> where ~“ ~ !2,A’ ~~and P“ ~ Pl~.

Finally, H:L?-O”, defined as the identity function is a m.p.p.m

fromS to S’.
o

R

Example 3.1.4

Let S1 = (f$,Al,Pl) and S2 = (02,142,P2)be probability spaces.

Let S = (Q,A,P) be the product space ofS1 andS2, i.e. Ql n1x02, I

A is the minimal o-algebra generated by A1xA2,and P is the product

measure. Finally take S“ : S1. Define H:fl-0” to be the projection I

function H(M A
~>02) = WI. Then H is a subjective map satisfying:

D
a) VE”G A>, H-1(E”) = EpX~9eA

(L

b) VE’eA’, P“(E”) = p1(E”)p2(Q2) = P(E”xS22)= PIH-l(E”]). II

Hence, H is a m.p.p.m fromS to S1. n

The following theorem characterizes the class of measure
,1

preserving point morphisms.

“B
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Theorem 3.1.1

Let S = (~,A,P) and S’ = (0’,A”,P”) be probability spaces and

let H:O--=-$2’be asurjective map.

Then H is a m.p.p.m from S to S’ if’~there are stochastic

processes Y = {Ye36e@ and Y“ = {Y~}6e0 over .Sand .S”respectively,

such that

a) Y“ generates A’ up to completion.

b) Y and Y’ are distribution equivalent.

c) For every 0~0, there is a null set NeGA such that

(c.1) V@N6, Ye(u) = Y;(H(u)).

Proof

(~) Assume that there are Y and Y“ satisfying conditions

a) -c). Fix any finite L ~ {(31,...,en}c0 and any Be13IL] = & 9

where IL] = n is the cardinality of L. Consider the sets

(1)
~A
= {0: (Ye(u),....Y~(u))~B}~A

1 n

.

and the Borel spaces

(3) B(L) ~ (~[L],~lL1,p )L

(4) f3-(L)$@L[,81Ll,P~) .

Since Y and Y- are distribution equivalent, it follows from Definition

2.4.4 that

In particular, it follows from (5) that

(6) P(E) = PL(B) = P~(B) = P’(E”)c

E

I
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Next, let ~ be the

(7)
‘L

4 UN~e~
eeL

Furthermore, in view of

collection of all null sets in A. Then clearly
I

(c.1), (l), (2) and (7)

(8) H-l(E’)-NLC ECH-l(E’) NL .

Since A is complete we can conclude from (8) that there is a null set

fiCNL such that

(9) H-1(E“) = EDfieA

whence, due to (6),

(10) P(H-l(E”)) = P(E) = P“(E”),
E

As L ranges over all finite subsets of Eland B ranges over all

events in 731LI,
%

the resulting sets E’ in (2) range over the minimal

algebra a(Y’) generated by Y’. Thus, from (9) and (10) we conclude m

that conditions a) and b) of Definition 3.1.2 hold for any event

E-e a(Y”). B

A standard application of the Caratheodory Theorem (see [Ll]
1

p. 87) extends the validity of (9) and (10) from the minimal algebra

u(Y”) to the minimal a-algebra,o(y’) generated by Y’. It then readily R

follows that (9) and (10) are also true for every E“ in the.completion

~=A. Hence H is a m.p.p.m from S to S’. ‘m

(~) Assume that H is am.p.p.m fromS toS’.

A AN, y. ~
34{IH-I~E-)~E-eA-where1ADefine El= {IE,}E.GA. andY

is the indicator function of the set A. It follows that Y and Y“ thus 1

defined trivially satisfy conditions a) - c).

•1
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3.2 Stochastic Simplifications <6
6&
h=

Stochastic simplifications are defined via stochastic morphisms
PT.
w.“
rr
i%

whose simplificational effect is discussed in the preceding section

and in Appendix B. For measure preserving point morphisms we make

Definition 3.2.1

Let S = (~,A,P) andS” = ($2”,A’,P’)be probability spaces.

We say that the ordered pair (S,S”) is a simplification pair,if there

is a m.p.p.m H running from S to S’. In this case we write

S&WS” and refer to it as a (stochastic)point simplification.

In this context, S will be termed the base space, and S“ the Zwnped

space of the point simplification S&S’. o

We note in passing that the point simplification relation among

probability spaces is transitive.

The complexity

is that of lumping,

induced by H may be

reduction effect of a point simplification

since the map H and the set transformation h

thought of as coarsening the base space’s

sample space and u-algebra respectively.

The preservation effect of a stochastic simplification S@S’

on a behavioral pair (Y,Y’) should naturally be a statistical one.

The most important preservation notion from an analytical standpoint

is that of distribution equivalence of Y and Y-. This situation

will be referred to as p~eservation in d{stzv%ution.

Weaker notions of preservation include preservation of one

dimensional distributions,preservation of means and of higher moments

1
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of the respective random variables in Y and Y .

For preservation in distribution we have the following sufficient

condition.

Theorem 3.2.1

Let S~SO be a point simplification where !3= (c?,A,P)and

R,,

/.

I\
S“= (~”,A’,P’). Let Y= {Ye}eEeand Y“= {Y~16eQbe stochastic

processes over S and S’ respectively. Suppose that the m.p.p.m @

H satisfies

a) for every eeo there is a null set NeeA such that

(ti.1)Vo.@Ne, Ye(u) =y~(H(L@).

Then Y and-y’ are distribution equivalent.

Proof

#
/

Take any finite L $ {61,....6n}C@ and any Bed. Define

:
‘L

o then NL is a null set of A.
6??6’

Consider the events
“:8’

(1) El {0: (Ye(u),....Ye(o))GB16A.
1 n

(2) E- ~ {u-: (Y@-),...,Y@”))GB} eA”.
1 n

It follows from (l), (2) and a) that

(3) H-l(E’)-NLC EC H-l(E’)u NL.
,#

From (3) we conclude that there is a null set fi6A such that ‘a

(4) E = H-l(E’)D~ .

But sir.ceH is a m.p.p.m, (4) implies

(5) P(E) = P(H-l(E-)Dfi) = P(H-l(E”)) = P“(E”).
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the Borel spaces 6(L) ~(lR]Ll,BILl,PL) and
<m
<6
v-

3 6’(L) ~(lRIL],BILl,P~)(see Definition 2.4.4) satisfy
~?
w..
rr
Ks

(6) PL = P[ for any finite LcO.

whence Y and Y’ are distribution equivalent, as was to be proved.
❑ 1

Corollary 3.2.1

t’ Replace condition a) in Theorem 3.2.1 by the following one:

a ) for every 060, there is a null set N~GA” such that

(al) Vu%N~, Y6(u) =Y~(u”)

Q
where u is any inverse image of w“ by H, i.e. H(u) = u-.

Then Theorem 3.2.1 still holds.

a o

U,...
N
rd

3\

a
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(,

3.3 The Effect of Point Simplifications on Behavioral Frames
B

In this section we shall investigate the simplification effect

exercised by a point simplification on the behavioral frames of the 4

base space. Our goal is to elucidate the nature of this effect

and to derive an interpretation that would properly fit the under- i

lying conceptual framework of Appendix B and Chapter 2.
s

We start with an interpretation’based on the characterization

of measure preserving point morphisms in Theorem 3.1.1. Loosely
@

speaking, the theorem states that the existence of a m.p.p.m between

probability spaces is equivalent to preservation in distribution of #

certain distinguished and comprehensive behavioral pairs.

Under our conceptual framework, this interplay between

and “behavior” is hardly surprising. It coincides with our

“structure”

general

view that structure is the totality of behavior and that the two

notions are dual. Thus, in Theorem 3.1.1, point simplifications which 8

are structure lumping at the sample space level

at the o-algebra level, emerge as equivalent to

distribution of certain superframes.

Now, Theorem 3.2.1 provides a natural way of

variables over point morphic probability spaces.

s= {n,A,P) is some underlying probability space,

and measure preserving
...
f,

“g
preservation in

the set of random

Definition 3.3.1

variables over S.

a
matching random

I
)

In the sequel, if

then M(S) will denote

#

Let S&S’ be a point simplification from S = {n,A,P) to ‘Bi

s’ = {Q*,A”,P”). The matching operato~ from S to S’ associated with

B

@

a
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S&S’ is H:M(S”)+=-M(S) defined by

H(Y’) = Y, where for every uMl Y(u) ~ Y“(H(u)).

The matching operator is

Supplement). Some properties

Lemma 3.3.1

investigated in [Dl] (see Sec. 3 of

of H are given in

Let H be the matching operator associated with a point

simplificationS&S>. Then

a)

b)

c)

Proof

H satisfies RV1, RV2, RV3 and RV4 in [Dl] pp. 453-454.

The range of H (denoted I?(H))satisfies

R(H)c {Y: YeM(S), and Y is constant on H-l(u”), Vu”e Q”}.

Every pair of random variables Y-e M(S”) and lf(Y”)eM(S)

is distribution equivalent.

H-l(A-) !{A:A= H-l(A”) for some A“eA”l is a sub-u-algebra of A.

Consider the set transformation h: H-l(A’)_A induced by H where

(1) h(A) ~ u {H(u)} , vA~H-l (A:).
weA

It can be verified that h is bijective, and furthermore, that both

h and h-l satisfy MP1, MP2 and MP3 in [Dl]“pp.452-453. From [Dl] p. 454

it now follows that H is the unique transformation satisfying a). .

Condition b) follows from the fact that if Y = H(Y’),then

(2) VUGQ, Y(u) = Y“(H(u))

by definition of H. Equation (2) further implies that

(3) {u: Y(w) e B} = H-l({u”: Y’(u’) eB})
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1

for any Borel set B, whence c) follows by the measure preserving

property of H-l.
o

A full characterization of the range of H is given in the
,-.

# ,’

following theorem.

Theorem 3.3.1

Let H be

cation .’I&S’

the matching operator associated with a point simplifi-

where S =(~,A,P)and S” =(~”,A’,P’). Then

(a) R(H) = {Y: Y immeasurable on H-l(A”)}.

I
Proof

s

1,

If YeR(H), then Y is measurable on H-l(A’) by (3) in Lemma

3.3.1. Conversely, suppose that Y is measurable on H-l(A’). Suppose

s
first that Y = 1A for some A6H-l(A’). Then YeR(ff) because

.-,

H(IHIA)) = 1A by RV2. The proof for’an arbitrary Y measurable on
u

❑ +,H-l(A”) follows from RV3 and RV4.

1

Loosely speaking, Theorem 3.3.1 shows that the effect of H on

B

()

M(S’) isto match it with a subset of M(S),whose elements have

restricted measurability. Moreover, Y“ is a distribution equivalent
H

lumped version of H(Y’),due to c) and b) respectively in Lemma 3.3.1.

Y’ is also seen to be a coarser version of H(Y’) by (a) in Theorem 3.3.1. 1

Later on, we shall argue that this restrictional effect may be
-,

viewed as the effect of the point simplification S&S” on the set @

of behavioral frames of S.

point simplifications which

To clarify this view we shall consider
B

are substantive in the following sense.



135

Definition 3.3.2

Let S = (G,A,P) and S” = (~’,A’,P”)be probability spaces.

A point simplificationS&SO is called sttict if

a) HEOGA such that VE”fiA”, P(EODH-l(E’)) > 0 . El

Observe that non-strictness means that S and S“ are point homo-

morphic (i.e. H-l(A”) equals A) up to null sets.

In the sequel,we shall use the equivalence relatibn ~“ (equality

almost surely) on M(S),where S = (n,A,P) is some underlying probability

space.

‘1

k

This relation is defined by

~“ Y2 iff P({u: Yl(u) #Y2(0)}) = O .

equivalence class under ~s” is denoted [Y] for any representa-

tive YeM(S), and will be referred to as the set of versions of Y.

Next, we characterize strict point simplifications in terms of

its matching operator ff.

Theorem 3.3.2

Let S~S” be point simplification. Then

S&-S” is strict iff

H is not subjective in the sense that there is Y~M(S) such that

(a) [Y]fiR(H) = @ .

.

Proof

(~) Assume SAS” is strict. Let EoeA be the event satisfying

(a) of Definition 3.3.2. Consider the indicator function IE of Eo.
o

Suppose that for some null set N6A there is a version IEbN of IE
o 0
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such that IE~N e R(H). But from Theorem 3.3.1 it follows that
o B

I~PN is measurable on H-l(A”). In particular, E$Ne H-l(A”) viz.

o a
(1) H-l(E~) = E&N for some E;~A”.

,,

Taking note of (1) we have 4

P(E&H-l(E~)) = P(Eo~(E&N)) = O

which contradicts (a) of Definition 3.3.1. We conclude that E

[IEo]n R(H) = Q.
“,.,

r

(~) Assume that S~S” is not strict. Then A = Cr({H-l(A”)UN})

where N is the class of null sets in A. Consequently, if Y is a

A-measurable, there is a version Y*

By Theorem 3.3.1, Y* GR(H); so that

e [Y] which is H-l(A”)-measurable.

[Y]0 R(H) # o as required. •1

From Definition 3.3.2 we see that in order to render a strict ..

point simplification a nonstrict one, one needs to coarsen the ‘3
u-algebra of the base space. Now, Theorem 3.3.2 asserts that this is

I
equivalent to limiting the scope of random variables over it to

those which have a version in R(H), and by Theorem 3.3.1 these are
I

H-l(A”)-measurable. We then proceed to claim that this can be viewed /---

as the effect of a point simplification on the behavioral frames of t

its base space. To do this we argue that the underlying point simpli-

fication may be replaced by an equivalent one as follows.
.B

Let S~S- be a strict point simplification where S = (!Q,A,P)
B

and S’ = (G”,A”,P*). The alleged equivalent point simplification is -.

S&!) where I is the m.p.p.m of

“~~, ~~H-l(A-), ;~Pwhere $2

(See Figure 3.3.1.)

AA

Example 3.1.3; that is, ~ = (&,A,P)

~, and I is the identity map.
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E

Figure 3.3.1: Relations among

Simplifications

H

the Equivalent Point

S&-S* and S&~.
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To qualify the equivalence claim above we merely point out that

S and S“ are point homomorphic, so that ~&S” is a

simplification. Consequently, SIkS” and S~~ can

equivalent simplifications, since their base spaces

nonstrict point

be viewed as

are identical>

and their lumped spaces are point homomorphic and therefore probabilis-

tically equivalent in the sense of Definition 2.1.1.
I

In particular, Theorem 3.3.2 guarantees that all random variables

in M(S”) and M(s) can be exhaustively matched (up to equality almost a\

surely) in a distribution preserving manner via the matching operator

H associated with the non-strict point simplification S“&~.

Thus, we are justified in trying to determine the simplification

effect of the point simplification S&S” from the equivalent point

simplification S~~, especially as regards the behavioral frames.

The lumping effect of S&~, as far as “structure” is concerned,

is evident, since H-I(A”) is a coarsening of A in the sense that the

former is a sub-u-algebra of the latter. In particular, every atom+

of H-l(A”) is a union of atoms of A.

.
The simplification effect of ~~~ as far as “behavior” is

concerned can now be described as a reduction in the scope of the
.

behavioral frames of the base space S. For one thing, M(S)nM(~).
A

Furthermore, the random variables in M(S) are coarser than those in

M(S),because restricted measurability of random variables increases

their sets of constancy.

This simplification effect can be seen even more clearly when one

examines random variables in M(S) and M(i) that have mathematical

t
An event A is an atom if every measurable subset of it is either

A or @.

t

f’

a
...

I
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expectations. It is easily seen that the class of such random
<0

/ <m
l--

8

A *T
variables over S can be obtained as conditional expectations of w-

r~
6s

random variables in M(S) with respect to the u-algebra H-l(A-).,,.

J
The smoothing effect of conditional expectations is well known (see

s [Ll] p. 349); loosely speaking, random variables (with expectation) in

M(S) are averaged to constants over the non-null atoms of H-l(A’),

i

thus yielding a random variable in M(S”).
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CHAPTER 4

..

JACKSON QUEUING NETWORKS
1!

@

4.0 Introduction .

Jackson queuing networks are a generalization of M/M/s queues, #

and as such they provide the simplest generalization from single

1
queues to networks of queues.

Thus,their study constitutes an essential step in the study of
,1

queuing networks. However, the apparent simplicity,alluded to above,

is rather deceptive. Actually, one witnesses a steep increase of 1

conceptual

going from

acteristic

and analytical complexiti~s (see Appendix B Sec. B.3),when

M/M/s queues to Jackson networks.
1

This increase is char-

of the difficulties presented by queuing networks as
s

compared to single queues.

The term ’’Jacksonnetworks’’was chosento acknowledge the pioneering

work of R. R. P. Jackson and J. R. Jackson during the SO’s and 60’s.

4
In [JR1] and [JR2] R. R. P. Jackson initiates the study of tandem

Jackson networks,with the main result being a now-classical derivation
1

of the equilibrium line lengths distributions.

The work of J. R. Jackson in [JJ1] and [JJ2] subsumes the previous I.

work, by extending the line length results to arbitrarily connected

Jackson networks (which are called by him Jobshop-like networks].
1

Jackson networks provide an analytical stochastic model for a
i

variety of real life systems. Typical applications are: computer

operating systems, communication networks, and industrial manufactur- #

ingand repair processes. In this chapter we investigate various .%

c
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operating characteristicsof arbitrarily connected Jackson networks.
<d
<m
h“-

The discussion will be restricted

consist of single servers, unless

~T

to Jackson networks whose stations .-
rr
E=

otherwise specified.

4.1 Informal Description of Jackson Networks

A Jackson netiork is composed of finitely many stations, each

housing a finite number of identical independent servers operating in

parallel. The service stations are arbitrarily interconnectedby di-

rected arcs, indicating permissible paths of customer flow.

A typical service station is depicted in Figure 4.1.1. A customer

may arrive at a service station either from an exogenous source or from

other service stations. Exogenous customers arrive according to inde-

pendent Poisson processes. Each service station has a decomposition

switch that superposes all incoming customer streams. An arriving cus-

tomer is

infinite

position

directed into a FIFO+ (first in first out) waiting line with

capacity. Consequently, customers are never lost at the recom-

switch on account of lack of waiting room. When a customer’s

turn comes to be served, he samples an exponentially distributed service

time. When service is done, the customer enters a decomposition switch

which is a stochastic decision maker whose task is to route a customer

to his next destination. At this point

altogether for an exogenous sink, or he

service station. Each routing decision

the customer may leave the system

may be directed to any other

is obtained according to a multi-

nominal Bernoulli trial. Such decomposition switches are called Bernou2Zi

f’
Actually, almost all results are independent of queue discipline.

I
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u.
1

decomposition switch

waiting line

decomposition swi

[

exogenous input

I
I

i

,. I I
. . ● I“i

11}
I

Is
1

service stat

endogenous

ion i

inputs

1’
qi

t

exogenous output

endogenous outputs

Figure 4.1.1: Typical Node i in a Jackson Network with
Multiple Server Nodes.
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suitclzes(see [DCl]). All stitchings are instantaneous operations.
:W
<.n
<.-.
l.-

Finally, all exogenous arrival processes, all service processes and ,_-1-

r~
all routing decisions consist of mutually independent random variables. K2

This completes the informal description (in the sense of Chap-

ter 2) of Jackson queuing networks,

network as a coordinate probability

that a family of finite dimensional

via one-dimensional ones,due to the

quent generator set, viz. exogenous

The coordinate space representation

A formal representation of a Jackson

space follows Example 2.5.3. Notice

distributions has been specified

mutual independence of the subse-

arrivals, services and routings.

will be used in the next chapter.

It is convenient to associate with a Jackson network a directed

graph,to describe its “stochastic” topology. The nodes of the graph

are numbered 1,2,...m and stand for service stations. The node set of

a Jackson network is denoted M ~ {1,2,...m}; the arcs are denoted

(i,j), OS l,j Sm, in the natural way. Node O denotes a fictitious

service station

genous “source”

is labeled with

interpreted as the “environment” (i.e.both the exo-

and the exogenous “sink”). Each arc (i,j)yls i,j s ~,

the routing probability p.. associated with it. The
lJ

resulting substochastic matrix P = [ ..] is called the .witchingmatrix
mxm ‘lJ

of the network. The probability piO of quitting the network at node i

m

G
is denoted by qi ~ 1 - p,.

lJ
~ pie.

J=

The arcs leading to the environment sink and those originating at

the environment source are called,respectively,outZets and ini!etisof

the network.

The parameter

by ai. The vector

of

of

the Poisson arrival process to node i is denoted

input parameters a 4 (al,az,...am) is called an
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ITA

Figure 4.1.2: Graph Representation of the Topology of a
Jackson Network. I



arrhaZ veutop if C4? O. Observe that poi = ai/2
We shall label

J=lt”

inlets of the network by ai rather than by p~~. Likewise, the service
—

VA

veator is o !!(al,....um). provided u > 0.

The graph associated with a Jackson network is depicted in

4.1.2. Note that arcs labeled bypij = O or ai = O are simply

Graph terminology is extensively used throughout Chapters 4 and

Definition 4.1.1

Let M = {1,2,...m} be a finite node set. Let a = (u.,...u_

Figure

deleted.

5.

) be an
J m

arrival vector, u = (Ul,...,am) - a service vector,and Pmxm -
a switch-

ing matrix. Then the quadruple JN = @,a,a,p) is called aJaokson

ndwo~k ~peoifi”cation. •1

Once the background conventions of Jackson networks are understood,

a Jackson network specification JN is an economical way to describe a

particular network by specifying its parameters.

4.2 A Stochastic Qucuing Model

In this section we develop a formal stochastic model for the

queuing process described informally in the previous section.

Let JN = (M,a,d,P)be a Jackson network specification. We begin

with m[m+2) mutually independent right-continuous Poisson processes

denoted”{A~(t)}t>O (each with intensity ai) and {Sij(t)}t>O (each with

intensity u pi.),fw 15 i~m, OS j~.m.
iJ The {A~x(t)]t>O model the incom-

ing streams of exogenous customers at the respective nodes. Each

{A~[t)3t>0 is callad the emogenou8 arr%valpzweesE at node i. The

‘s.Jj(t)}+~J 1 s i ~m, O ~ j S m, will later on aid us in modeling the

traffic processes on the arcs (i,j).
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The service mechanism at each node i is modeled by the process
m 1

{Si(t)}t20 where Si(t) ~ ~Sij(t). The {Si(t)}t,O are mutually inde-
j=0

B
pendent Poisson processes (see [Cil], p. 87) with respective intensities -..

u.. Each {Si(t)}t>O will be referred to as the service process at
1 9

node i.

Finally, the associated unde~lying jump p~ot?ess {J(t)}t>O is de- $

fined byJ(t) ~ ~A~(t) +
t8

Sij(t) =
t

(Aex(t)+Si(t)).
i=l 1 J

i== 1=

The queuing model to be described is motivated by the following

1
observation.

Consider the stream of customers emerging from service station i
1

at its decomposition switch. Given that throughout some time interval

the queue was nonempty (busy period), the customer stream in that inter- B.

val accords with a Poisson process with intensity ai. When the queue

I
becomes empty (idle period),the customer stream dries up. Thus, this

customer stream is, loosely speaking, a periodically suspended (inter-
1

mittent) Poisson process.

Another way of saying it is that this customer stream is a filtered 9
Poisson process whose count in idle periods is masked out, so that only

I
counts taken during busy periods are registered.

A similar observation is valid for the customer stream on the arcs
J

[i,j). During busy periods, these streams are obtained from a Poisson

process with intensity cri,acted uponby a Bernoulli switch,with proba- 1...

bility pij for choosing arc (i,j). It follows that during busy periods,

1
these traffic streams are mutually independent Poisson processes with

i ij (see [Cil], p. 89). The {Sij(t)}t>O defined beforeintensities u p
t,

will play the role of the background Poisson processes whose appropriate

I
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filtering will later on yield the traffic processes on the arcs (i,j).

We now proceed to define two sets of stochastic processes. First

some preliminaries. A process in the first set is called the trafj%

p~ocem on arc (i,j) and denoted {Aij(t)}t>O, 1 S i ~ m, O S j S m.

Aij(t) is the traffic count on arc (i,j) in the time interval [O,t].

A process in the second set is called the (local) state proaess at

node i, and denoted {Qi(t)}t>O, 1 S i ~ m. Qi(t) is the line size at

node i (including any customer in service at time t). We shall also

need the following auxiliary processes derived from the above whenever

they are defined,

The endogenous arwiva2pPocess {A~(t)}t,O at node i is defined

The departwe process {Di(t)}t20 at node i is definedby

m

Di(t) ~ x Aij (t) , l$i<m.
j=O

The s~a-te {ndicatorprooess {Bi(t)}t>O at node i is defined by

IO, if
Bi(t) ~

1, if

We assume that

Qi(t) = O
,lSiSm.

Qi(t) > 0

there are given random variables Qi(0), 1< i Sm,such

that Q(0) ~ (QI(0),...,~(0)) , the A?(t), ~d the Sij(t) are mutually

independent. Qi(0) is called the initiaZ state of node i.

Let {Tn}n;O be a sequence of random variables where Tn is the n-th

jump instant of’{J(t)}t20 and TO ~ O. Then, almost surely

o =
‘o < ‘1 <

... < T < ... . Recall also that almost surely
n

A~(O] = O and Sij(0) =0, lSi~m, O~jSm.
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The definition of the traffic processes and local state processes

is carried out in two steps.

In the first step we define simultaneously the sequences of random

(A.2) Qi(~n) ! Qi (0) + Afx(Tn)+ A~(’n) - Di(~n) .

Lemma 4.2.1

The sequences

are well-defined.

Proof

The proof

representation

[1) Aij(~n) =

follows from the fact that the Aij(Tn) have a recursive

IO,ifn=O
(Aij(Tn-l) + Bi(~n-l)[Sij(~n) - sij(~n-l)], ifn>OCl

In the second step, we extend the {Aij(~n)}n~O and the {Qi(rn)}n~O

to the-respective continuous parameter stochastic processes {Aij(t)}t,O

and {Qi(t)}t20) lSiSm, O~j $ m, by setting for any t ~ O

J(t)

(B.1) Aij(t) ~ X ‘i(Tk-~)[Sij(T~) - ‘ij(T~-~ll
k=l

(B.2) Qi(t) ! Qi(0) + A;X(t) + A~(t) - Di(t)

We point out that the processes defined above do indeed comply with

their informal description in the previous section.

First, note that the sum in (B.1) is taken over all possible jumps
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of {J(t)}t>O in the interval [O,t]. Each term Sij(Tk) - sij(T~ ~), al-

most surely equalsO or 1..Only,when both Bi(~k-l) and sij(~k) ‘sij(Tk-l)

evaluate to one, does the respective term contribute to the sum in (B.1).
ts

J(t)
Next consider Di(t) $

F
~ J[si(Tk) - si(Tk J]B (T

=1

which counts service completions at node i in the time interval [O,t].

Clearly, the time interval separating any two consecutive jumps of

Hi(t) lt>o is exponentially distributed with parameter u.. We argue
1

that any time interval separating any jump of {A~x(t)}t>O and the very

next jump of {Si(t)}t>O is also exponentially distributed with parameter

ui, due to the forgetfulness property of Poisson processes. Further-

more, all such time intervals are mutually independent. Consequently,

exponential services rendered are correctly modeled.

Finally, (B.2) is a stochastic balance equation that keeps track

of the line length at time t, in terms of its initial value and the

traffic through the respective node during the time interval [O,t].

In order to

we shall rewrite

facilitate the investigation of the processes above,

(B.1) in equivalent intergral representation

t

(Cl) Aij(t) =
f

Bi(x-)dSij(x) (almost surely)

o

by which we mean that the sample functions are Riemann-Stieltjesintegrals
t

(C.2) Aij(w,t) =
J

Bi(u,x-)dSij(u,x), for almost every u.

o

(C.2) is almost

Bi(u,t) and Sij(u,t)

surely well-defined, because for almost every u,

are step functions with finitely many jumps. It

can now be directly verified that the integral representation (Cl)

reduces to the random sum representation (B.1).

Henceforth, o(Y) will denote the u-algebra generated by a set Y

of random variables.
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RTheorem 4.2.1

For any 1

(a) E(Aij(t))

Proof

(1)

be a

AA
n

Consider

Aij(t) =

1

t

= Cripij

[

Pr(Bi(x)=l)dx. 9

the integral representation
+ B
L

f

Bi(x-)dSij(X).

0
(n) <

For any fixed t, let nn: O = to < tl .O. <ty)=t
n

sequence of partitions of the time interval [O,t] such that

For the same fixed t, define a sequence
{AVt)}~l ‘f random

variables where
.tn

(2) A$~)(t) ~ ~ Bi(t~~) [Sij(t~) ) - Sij(t~~) ].
k=L -

Next, we show that

(3) A[~)(t) -> Aij(t) (almost surely).
n-@

Let ube a sample point such that

(4) A(u) ~ inf{t’-t”: J(w,t’) - J(o,t”) > 0 and t’,t’’c[O,t]}> 0.

Observe that A(u) > 0 almost surely.

Next, let n = nO(u) be an integer such that
o

(5) An < A(w) , Vn ? no

Then

(6) A!) (t) = Aij(t) , Vn ? no

#

B

whence (3) follows.

Next, we deduce from (1) that E(Aij(t)) exists and is finite !

I

s
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because

(7) O ~ E(Aij(t)) ~ E(Sij(t)) = uipij .

Hence

(8) E(A~) (t))~E(Aij (t)).

(n)
We now proceed to compute this limit. Since each Bi(tk-l) is

measu~able on

u({Qi(()),A~x(t), Sij(t): 1 $ i f m, O S j $ m, O ~ t S t~~})

(cf. Lemma 4.2.1],each Bi(t&~) is independentof Sij(t~)) - Sij(t$~).

Consequently, from (2)

4
(9) E[Afi)(t)) = ~E(~i(t$~))E(Sij( t~)) - sij(t~~)) =

h k=l

(n)
~P~(Bi(tk_l)

(n).t$O1 .= l)”ipij(tk -
k=l

(9) Is aRiemann sum whose integrand Pr(Bi(t)=l) is continuous in t.

To see this, note that {Bi(t)}t>O is stochastically continuous, viz.

1
(10) Pr[lBi(t+c) - Bi(t-c)l#O) ~ Pr(lJ[t+s) - J(t-c)l) =

m m

l(Z. ai+i~loi)●2’

I

1 -ei=l - *0

which implies convergence in distribution (see [Wl], p. 23). Thus, (a)

B
is obtained from (9) by passage to the limit as W. c1

i
We now direct our attention to the state prooess {Q(t)}tzo where

Q(t) ~ [Ql(t),

“B

...,QJt)) is the vector of line sizes in the network at

time t. We shall likewise denote B(t) ~ (Bl(t),....Bm(t)).

B

Aex(t) ~ (A~(t) ,....A~(t)). Aen(t) ~ (A~(t), ....A~(t)).

D(t) = (Dl(t),...,Dm(t)), etc. We shall also denote for any s ~ t,

s
Aex(s,t] ~ Aex(t) - Aex(s), Aen(s,t] ~ Aen(t) ~ Aen(s),

D(s,t] ~ D(t) - l)(s),etc.



152

Theorem 4.2.2

The state process {Q(t)}t>Oisa

transition probabilities. Moreover,

Prool

Markov process with stationary

~Qt%20 is eonsmvative.f

Consider the stochastic equation

(1) Q(t) = Q(0) + Aex(t) + Aen(t) - D(t) ,
~~o

derived from (B.2).

For anysst, (1) canbe rewritten as

(2) Q(t) = Q(s) + Aex(%t] + Aen(s~tl - ‘(s’t]

From this representation and by tracing back the definitions of

Aex(s,t], Aen(s,t] and D(s,t], we deduce (with the aid of the recursive

representation in Lemma 4.2.1) that Q(t) is measurable on

(3) U({Qi(S), A~x(u) - A~x~s)~ Sij (u) - ‘ij(s): ‘E(s’t]‘ 1 ~ i ~ ‘X

for any s S t.

Since Q(s) is measurable on

(4) u({Qi(0), A~(r), Sij(r): r s s, 1 < i < m> O s j s ‘})>

it follows that u(Q(s)) is independent of the o-algebra

(s({A~x(u)- A~(s), Sij(U) -’Sij(s): ue(s,t], 1 k i ‘m, O S j ‘m}).

The Markov property of {Q(t)}t.O now follows from Theorem C.1.l in

Appendix C, in view of (2) and (4).

Next, it follows from (4) that {Q(t)}t>o has stationary transition

probabilities, because the {A~x(t)}t>O and {Sij(t)~t>O have indePendent

increments with stationary distributions.

Finally, {Q(t)}t>o is conservative because its jumps are contained

t Has finite number of jumps in every finite interval with
probability 1.
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in those of the conservative process {J(t)}t>O. ❑
<“??

in
F-

In view of Theorem 4.2.2, the discussion in Sec. C.1 of Appendix C
v-
*-
Pr
R%

applies to the state process {Q(t)}t20. Accordingly, we denote ‘the

probability vector of Q(t) by q(t), In particular, the Kolmogorov

forward equation of the state process (see ibid.) is equivalent to the

system of integral equations
t

/

(D) qv(t) = qV(0)e-cvt + ~ qp(x) cPrVve-cv(t-x)dx
v

for every state v = (nl,....nm) 2 0. The sunmation in (D) is over all

m-dimensional non-negative integer vectors P.

In our case

where

I
,0, ifn.=0

b(ni) =
1

l,ifni>O

Furthermore, the quantity e-cvt

capable of altering the state v

giving the probability that no event

occurs during (O,t], also satisfies

-Cvt
e = Pr( ~ ~ (Aij(t) = o))

i=O j=O
j#i

Hence, the probabilityof a jump from state v in the interval (t,t+h]

iS cvh + O(h).

Since a transition between non-adjacentstates (see Definition

C.2.2 in Appendix C) requires more than one jump, it follows that the

time derivatives of the respective transition functions satisfy

Pvp(v) =Pvv(t,t) = o , tzo.

~us, {Q(t)}t>o is an m-dimensional birth-and-death process (see Defini-

tion C.2.3, ibid.).



154

Denoting Pt(nl,...,nm) ~ Pr(Ql(t) ~,....Qm(t) = nm) and with a=n

dot to denote derivative with respect to t, the birth-and-death equa-

tions for a Jackson network JN = (M,a,u,P)with single server nodes are

(F) ~t(nl,n2,.+o,nm) = .

(F.1) 5P (n
~=1 t I’”””ni

-1,...,nm)ab(ni)i)+

m

(F.2) ~Pt(nl,...,nj+l, nm)ojqjojqj +
j~l

m

(F.3) ~ ~Pt(nl,...,nl,l, nj+l,j,nm)ujpji*b(ni)*b(ni) -
i=l j=l

j#l
m m mm

(F.4) Pt(nl,....nm)[~oi + ~u.q. ~b(nj)+~ ~o.p. .”b(nj)]
i=l j=, J J i=l j=l ] ‘1

j+l
v= (n ,....nm) ?0.

Note that lines (F.1) - (F.3) give transition rate into state v;

(F.1) is due to exogenous arrivals, (F.2) is due to exogenous depar-

tures, and (F.3) is due to departures from node i resulting in an

endogenous arrival at

(i,i) does not change

Line (F.4) gives

node j. Observe that -trafficon feedback arcs

the state of the system.

the transition rate out of state v,.

It turns out that equilibrium solutions (see Definition C.3.1 in

Appendix C) for (F) depend crucially on the so-called traffic equation.

This equation will be investigated in Sec. 4.4.

B

D

R

R
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4.3 Notational Conventions and Terminology
t-
:W
6,0,

In the sequel we shall occasionally discuss convergence of matrices ;:
<,e,

h-

and vectors. Usually we deal with finite dimensional matrices and vec-
r’P
t%

tprs. In this case it is not necessary to specify the underlying norm,

because on finite dimensional linear spaces all norms are equivalent.t

However, whenever norm evaluation is required, it will allude to the

norm
n

(A) IIAII= max ~
l<i<m j=l

A
for any mxn.matrix A =

aij I

[aij ] .

Observe that for a vector v ~ (Vl,....vm).this convention implies

All arithmetical relations involving vectors and matrices are

pointwise relations; e.g. if A = [aij] is amatrix, then A? Omeans

that aij ~Oforalliandj. The transpose of a matrix A is denoted

by AT.

If S is a subset of a universal set U, then ~ wilI denote the

complement U-S of S in U. The cardinality of a set S is always denoted

by ISI.

To designate submatrices and subvectors, we introduce the follow-

ing notation. If v is a vector with index set K and S cK, then VS

denotes the partial vector obtained from v by deleting all coordinates

v., ic~.
1 Similarly, if Q is a square matric with index set KxK and

S CK, then QS denotes the partial matrix obtained from Q by deleting

all rows and columns, indexed by ~.

‘Two norms over the same normed space are equivalent, if they give
rise to the same set of convergent sequences over the space.
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Further p~eliminary comments and additional notation, concerning

stochastic processes, may be found in Appendix C.

We now proceed to establish a classificatoryterminology for

Jackson networks and related conventions. Consider again the graph

representation of a Jackson network (see e.g. Figure 4.1.2). Suppose

a customer arrives along an inlet at some node i. Then,the patihf

traced by him thereafter constitutes a finite Markov chain whose states

are the nodes of the graph,and whose transition probabilities are those

labeling the arcs of the graph. Thus, the graph may be used to repre-

sent the transition probabilities of this process, provided all outlets

are understood to lead into a fictitious node O (the “environment sink”).

This node corresponds to an absorbing state.

The transition matrix~of this Markov chain is obtained from P by

adjoining an absorbing state O as follows.

( 1 10 . . . 0

——1[p––—————
P~~l

(c) F4 . [ P

\

:1

PI
mO I

P, ‘otherwise

where pio - SPijOiqi = 1
j=l

B

, if P is not stochastic

:-
The Markov chain induced by P will be seen to play an important

1
role in determining system and customer behavior. In discussing it,we

shall adopt the usual Markov chain terminology and notation. The
R

reade~ is referred to Chapters XV and XVI in [Fl] for the pertinent

t
s

A path in the associated graph is any sequence of nodes connected
by arcs which are labeled by positive probabilities.

I

I
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‘n) designates the n-step ~2Wl?28$5b?3theory. In particular p.
<.??

lj
w-
P’r

probability from i to j.
b-

iT

W3

Definition 4.3.1

Let PmXm be a substochastic matrix. Then:

(n)>0
a) j is acoessibZe from i (denoted i ~j),if pij for some n 2 0.

b) i c?onwndoatee with j (denoted i~j),if i -j and j x i. a

In the sequel,we shall make it a habit to interchange the terms

“state” and “nodef’jso as to take advantage of the intuitive content

of the graph representation.

The forthcoming classification of Jackson networks is based on

their probabilistic topology, and cast in terms of ~and its associated

graph. First, wegive a node classification.

Definition 4.3.2
.

Let ~be the stochastic matrix associated with a Jackson network

JN = (M,a,cr,P). Let i be any node in

a)
(n)

i is called open if lim piO
n-

The set of all open nodes is

M. Then

> 0,

denoted O.

(n)b) i is called compZeteZy open if limpio = 1.
n-kO

Th’eset of all completely opennodes is denoted A.

c) (n)i is called pa.rt3aZZy open if lim piO < 1.
n-

The set of all partially open nodes is denoted B.

d) i is called aZosed if limpfi) = O.
w

The set of all closed nodes is denoted C. c1
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Figure 4.3.1 depicts a decomposition of a switching matrix P which

illustrates the relations among the node sets of Definition 4.3.2.

Henceforth, the sets R and T denote the recu..mentand trans{ent

node sets, respectively, in a Jackson network.

We make the following remarks concerning the “random walk” of a

customer in the network. This “random walk” is described implicitly

in the informal description of Jackson networks in Sec. 4.1.

Remark 4.3.1

a) An open node i has a path leading from it to an outlet

of the network (i.e. i - O). Thus, a customer in

node i will eventually leave the network with positive

probability.

b) A customer at a completely open node i will eventually

leave the network with probability 1. In particular,

A is an open set c30.sedunder a, that is

ic’A and i ~ j ~ jcA

c) A partially open node i must have a path leading from

i to the sink O, and another path leading from i to a

closed node. That is,

i~O and i-j for some jEC.

d) A closed node i has no path leading from it to the

sink O (i.e. i+ 0). Any customer in it is trapped in

the sense that he leaves the network with zero proba-

bility. C is closed under ~ in the same sense as A.

B
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8

Remark 4.3.2

a) M=OUC where onc=o

b) O =AUB where AnB=@. All the nodes in O

are transient.

c) C contains a nonempty finite collection R = ‘Rk}kcK of

recurrent equivalence classes of nodes (under the communi-

cation relation of Definition 4.3.1), where each Rkis

irreducible.

8

R

d) The set of all transient nodes is T = O u (C-R).

E

•1

We now introduce a Jackson network classification which follows

the pattern of the node classification.

Definition 4.3.3

Let JN = (M,a,o,P) specify a Jackson network.

a) JN is called open,if O = M.

b) JN is called czosed,if C = M.

c) JN is called mixed,if

d) A subnetwork of JN is

from

Remark 4.3.3

any inlet of the

it is neither open nor closed.

called autonomous, if it is not accessible 1

network. •1
9

a) If a Jackson network is open then all its nodes are completely

in this case B = 0; thus, O = Abypart b) of Ropen, because

Remark 4.3.2.



b) If a Jackson network is not open then it contains a collec-
<.0
<.m
M“-.-

tion of mutually non-communicating closed sets. This h-
rr

collection is {Rk}kEK in c) of Remark 4.3.2. c1

We now demonstrate our classification in

Example 4.3.1

Consider the Jackson network of Figure 4.1.2. We have

A= {4,5,6}

B = {1}

o =AUB = {1,4,5,6)

c= {2,31

R= {2}

T =OUC - R= {1,4,5,6,3}

The network is clearly a mixed one.
❑
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4.4 The Traffic Equation

The traffic equation is a formal expression of a flow conserva-

tion relation,which plays a c~cial role in determining the equiiibrii.mi

behavior of a Jackson network.

Definition 4.4.1

Let JN = (M,a,u,P)be a Jackson network specificatiofi, tie

traffic equat<on associated with it is

(A) 6=u+6P

in the unknowns 6 = (61,....8m).

A solution 6 ? O for (A) is called a trafficsolution. L1

The intuitive content of (A) is best seen when we rewrite it as a

!
system of linear equations.

Now, if one interprets each &i as the traffic intensity of customers

through node i in equilibrium, then (B) merely states that the ttkal

input intensity to node i equals the otitputintensity from it when the

system is in equilibrium.

J. R. Jackson used this intuition in [JJI] to give sufficient ton-

ditions,for open Jackson networks to evolve into equilibrium in terms

of the traffic solutions of (A). However, he does not investigate (A)

and its solutions nor does he justify the intuitive interpretation

above of 6;

In this section we shall investigate the

results will be later on tied to a discussion

the next section.

formal equation (A). fie

of state equilibrium in
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Lemma 4.4.1 (cf. [BMZ1], Theorem 4.1)
c=
:~
<-.

Let JN = (!.!,a,a,P) specify a Jackson network,and let T be its
r-
:*

<m

set of transient nodes. Then there is always a unique traffic solution
h-
FF

for T, given by
..
e%

Proof

It follows from our definitions that

(1) icT and jsR ~ j~i ~ pji=O.

Now, (B) and (1) enable us to write

m.-

From the transience of T we have (see [KS1], p. 22) that ~P~ is
n=O

finite.

Furthermore,

(3) (I - PT)-l = ~ P;
n=o

where I is the identity matrix.

Next, rewrite (2) as

(4) ~T(I - pT) =

In view of (3) we

for T. Moreover,

‘T

immediately conclude that (a) is a traffic solution

this solution is guaranteed to be unique by the

-1
existence of the inverse (I - PT) .

Lemma 4.4.2

Let JN= (M,a,u,P)be a Jackson network specification, and define

D4BU (C-R). Assume that ~=O.

Then 8D = O is’the unique traffic solution for D.

c1
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Proof

It follows from our definitions that

Again, (B] and (1) permit us to write

(2) 6D = aD + 6DPD

and since u
D
= 0, (2) reduces to

(3) 6D = 6DPD .

8

Since DC T, it follows from Lemma 4.4.1 that there is a unique solution
I

for (3). Clearly ~ ~ O is a solution for (3). Hence,this must be the

unique traffic solution for D. c1 t

We are now in a position to characterize the existence of a traffic
r

solution.

Theorem 4.4.1

8

Let JN = (M,a,o,P)be a Jackson network specification and let A be

I
its set of completely open nodes. .

Then,a traffic solution exists iff ax = O.
I

Proof

Partition P, a and 6 as follows:

I

[]

I

‘A ‘
o

I
1

P= - ----’----
1

Q ~ PA I
I —

a= (ctA; aI) and 6 I= (6A ; 6X).

8
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Consequently, the traffic equation (A) is equivalent to the following

two equations:

(1) j = GA + 6APA + 6AQ

Note that

(3) li=Buc= Bu(C-R)UR=Du R.

If~= o the theorem holds trivially by Lemma 4.4.1. Therefore we may

assume that ii# O in the sequel.

(~) Assume that

(4) Cix=o.

Since AC T, there exists a

Therefore, the existence of

existence of a solution for

But by assumption (4),

unique solution fo~ ISAdue to Lemma4.4.1.

a traffic solution is equivalent to the

61 in (2).

Equation (2) reduces to

which has a traffic solution 6A = O.

(==&) Suppose ci~# 0, and let is~ have

(6) ai >0.

By (3), ieBUC.. If icC, then there is clearly a node reR such

that i~r. If icB, then by c) of Remark 4.3.1 there is

a node ceC such that i~c, Consequently, for each is~

(no)
(7) 3rcR such that i~r , i.e. 3n0 such that pir > 0 .

It follows from llarkovChain Theory ([F1], p. 389) that

(0 ‘&) }$%) kix ir ~ p~-n’) ~ ., n=O n=no
k+m

Next, substituting 6X repeatedly on the right hand side of (2)

k times yields
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. .

solution either.

Corollary 4.4.1

- = O iff no closed node is
aA

ah = O ~ 6AQ= O, where Q is

Theorem above.

•1

Although Corollary 4.4.1 follows

direct proof of UK = O ~ &~Q = O

accessible from an inlet. Moreover,

a partial matrix of P given in the

Refer to Theorem

Notice that

icA.

4.4.1, assuming that

from Theorem 4.4.1, the following

sheds more light on the situation.

% = 0“ D

each coordinate in 6-Q has the form
A X 6.*.. for some

jciiJ ‘l I

In view of (3) in Theorem 4.4.1, either jcD or jsR.
!

If j~D, then 6
j
= O by Lemma 4.4.2,sincein particular aD= O.

If, jcR, then j-i, since icA. This implies that p.. = O. I]1

Consequently, either 6. = O or p.. = O.
J ]1

Hence, in any event,djpji = O for any js~ and any icA, whence

Xd.p.. =0.
js~ J ‘1

We now proceed to characterize the uniqueness of the traffic
B

solution.
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Theorem 4.4.2

.

Let JN = (M,a,u,P)be a Jackson network specification for which
:2
<’?
P-
;W

a traffic solution exists.
cm
<.??
k“.

Then, the traffic solution is unique iff the network is open.
VT
k-
m

Es

Proof

(~) Assume that the network is open. Then by a) in Remark

4.3.3, A = @,sothatM= T. The uniqueness of the traffic equation now

follows from Lemma 4.4.1.

(~) Assume that the network is not open. Then C # @ and conse-

quently X # 0.

By Theorem 4.4.1, for a traffic solution to exist, it is necessary

that

(1) u~= o

so that Equation (2) of Theorem 4.4.1 reduces to

(2) 61 = ‘y’~

By Lemma 4.4.2

Hence, in

(3) 8C-R = o.

.

‘D =
O,whereD~BU(C- R),since (1) implies ~ = O.

particular,

Now, (3) and (B) allow us to deduce from (2) that

(4) 6R = dRPR

where R = ‘Rk}keK
is the set of recurrent nodes and each Rk is irredu-

cible. Observe that PR is a stochastic matrix. Due to the nature of R,

Equation (4) is equivalent to the system of equations

(5) +/k = 6RkpRk ‘ kcK

where each Rk is a stochastic matrix.
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It is known from Markov Chain Theory (see [KS1], p. 100), that for

each kEK, there is a probability vector llksatisfying the respective

equation in (5). It is also clear that for each kcK, the entire

linear space spanned by IIk

(4) does not have a unique

solution is not unique.

Corollary 4.4.2

solves the respective equation in

solution

IfJN = (M,a,u,P) specifies an

unique traffic solution is

Cs= a(I - P)-l=rx~Pn .
n=o

Since the traffic solution may

determine the dimensionality of the

in 6
R“

We conclude that

(5). Hence,

the traffic

u

open Jackson network, then the

not be unique,it

traffic solution

a

is of interest to

space.

Theorem 4.4.3
I

Let JN = (M,a,o,P) specify a Jackson network for which there is a

non-unique traffic solution. Let 6’ ~ (d;; ~~l; Q*O ; ~~ ) be such
IKI

a solution, where K is the index set of the irreducible classes {Rk}kEK
.

,fl
Then, the traffic solution space is lK1-dimensionalin the sense

that any traffic solution 6 has a representation 6 = (~;; Y1~;; ● *. ; 9

‘lKl$K1
)-in terms ofd’ and some scalars yl,...,ylKl 2 0.

Proof s

Since the traffic solution for T is unique and in view of

Theorem 4.4.2, it suffices to show that for every k~K the respective B

D



has a l-dimensional traffic solution space in the sense above. But

this follows immediately from the fact that (1) has a unique probability

solution (see [KS1] p. 100). u

The conservation aspects of the traffic equation is illustrated in

Theorem 4.4.4

Let JN = (M,u,o,P) specify a Jackson network for which there exists

a traffic solution 6. Then

(a) ~ ai = ~ 6iqi.
i=l i=l

Proof

From the traffic equation (A) we have

(1) a=8(I -P).

Letu~ (1,1,....1) be the m-dimensional row vector of 1’s. Post-

multiplying both sides of (1) by UT gives

(2) auT= 6(1 -p)uT.
m

A direct computation shows that auT = ~ai and (I - P)UT = qT, where
i=l

q Qq ““”xlr n).Hence (2) becomes

(3) ~ ai = dqT = ~ 13iqi
i=l i=l

which was to be proved. ❑

Intuitively, Theorem 4.4,4 asserts that the total influx intensity

of customers into a Jackson network, equals the total outflux of



170

customers from it, when the network is in equilibrium.
B

On the basis of the

intuitive interpretation

equation.

facts accumulated thus far, we can now give an

summarizing the investigation of the traffic I

First, by Theorem 4.4.1, the existence of a traffic solution is I

equivalent to the fact that only completely open nodes may have inlets.

B
If, however, any other node had an inlet, then there would perforce be

a path from an inlet to a recurrent subset of nodes. Such subsets are
B

closed by definition, and hence are customer trapping. Intuitively,

this means that customers would pile up indefinitely in a trapping sub- 1

network. Clearly, this subnetwork would be out of balance as regards

1
the rates of customer flow through it; th’einflux of customers into it-

would be positive but the outflux would be zero, in contradiction with
I

the intuitive interpretation of the traffic equation as describing a

balanced flow rate of customers through each node and each subnetwork B

for that matter.

Indeed, the transient node set has always a traffic solution by
9

Lemma 4.4.1, since customers will never be trapped in them and flow
I

rate balance can be always maintained. When.a traffic solution is

guaranteed to exist, it follows that, in particular, nodes in T-A can- 1

not have access from an inlet. Consequently, they eventually lose

I
their customers due to their transient nature,without being replenished

with new ones. Eventually, customer traffic in them would die out and
I

this part of the network would come to a standstill. Indeed, Lemma

4.4.2 shows that the equilibrium traffic rates through them is zero. 9

However, customers that drain out of this set and into the recur-

rent nodes of the network would cycle there forever. Since this set



171
<%
:??
<-?
r-
:U.

is autonomous, it neither gains nor loses customers. Eventually, the
<4
<,0
t.-

number of customers in each irreducible class will

and a balanced flow rate through its nodes will be

Indeed, even though a traffic solution exists

*’E

reach a fixed level,
.-
ry
c%

attained.

for the recurrent

part, by Theorem 4.4.3 it cannot be unique. It depends on the total

(fixed) number of customers that cycle in each of its irreducible

classes. Intuitively, this depends on the initial configuration of

customers in the network and how they drain into the recurrent node set

from the non-completely open part of the transient node set, Since

there are IKI irreducible classes, the solution has IKI degrees of

freedom in accordance with Theorem 4.4.3. Each degree of freedom cor-

responds to a choice of total number of customers in each irreducible

subnetwork (in equilibriinn),and the resulting traffic solution is

proportional to this total number.

Our discussion has several important ramifications, provided that

6 may be interpreted as equilibrium flow rates of customers through

nodes, and that the existence of a traffic solution is necessary for

equilibrium. Since these will be shown to be true in the next section,

we shall defer the discussion of this issue until this intuition can

be formally justified.
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4.5 The State Process in Equilibrium
I

In this section we study equilibrium properties of the state

process and equilibrium related aspects. The reader is referred to m

Appendix C, Sec. C.3 for some relevant background. Accordingly, a

probability vector of the state process {Q(t)}t20 will be denotedby I

q(t), and an equilibrium vectorby q“.
I

State equilibrium results may be found in the literature fo~ open

Jackson networks and autonomous ones. These we now proceed to cite; I

the reader is reminded that all Jackson networks alluded to have single

server nodes. ‘[”

The following classical result for open Jackson networks is due to
I

J. R. Jackson

Theorem 4.5.1

Let JN =

(See [JJ1]).

(Jackson’s Theoremt)

(M,a,o,P) specify an open Jackson network. Suppose that I

for each 1 ~ i Sm,

(a) pi~~fl
i

where & = (61,...,dm) is the (unique) traffic solution of JN.

Then, the birth-and-death equations of the state process {Q(t)}t>O

have an equilibrium solution vector q“, which for anyv = (nl,....nm)20

is given by

(b) q: 4 Pr(Ql(t) = nl,...,~(t) = nm) =
ni

;(l-Pi)Pi ●

i=l

Proof

By direct substitution into the birth-and-death equation (F) in

Sec. 4.2 (see [JJ1]). ❑

t Originally, this theorem was proved for open networks with arbi-
trary number of servers in the nodes.



An analogous result was proved by Gordon and Newell for autonomous
Lm
<.!?
h-
, .F

closed Jackson networks (see [GN1]). F“.
lv
en

Theorem 4.5.2 (Gordon-NewellTheoremt)

Let JN = (M,u,u,P) specify an autonomous closed Jackson network

with communicating nodes. LetfMbe the total number of customers in

the network,:such.that

(a) Pr(YM = n) = 1.

Then, the birth-and-death equations of the state process have an equi-

librium solution vector q“ = q“(n) (depending on n), which for any

v= (nl,....nm) ~ O is given by

(b) q;(n) 4 Pr(Ql(t) ~,...,~(t) = nml#M= n) ==n

A ‘i
where g(n) is a normalization factor, and Pi = ~ where

i

6 = [(31,,..,tim)is any traffic solution.

Proof

By direct substitution into the birth-and-death equations (F) in

Sec. 4.2 (see [GN1]). El

f-
Originally, this theorem was proved for autonomous

networks with arbitrary number of servers in the nodes.
closed
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The results cited above reveal a remarkable property of the state

process; they exemplify an equilibrium solution for the state process

{Q(t)}t20, whereby the local states Qi(t), 1 ~ i ~ m, are mutually

independent for every fixed t ~ O. Moreover, each local state process

{Qi(t)}t20 in the open network behaves as i$

with exogenous input parameter ~i (see [JJ1]

J. R. Jackson points out (see [JJ2] pp.

node i were a

pp. 378-379).

135-136) that

M/M/l queue

for open

networks,the recurrent state set of the global state process is irre-

ducible, and thus the equilibrium solution vector of Theorem 4.5.1

is a long run vector (see Definition C.3.1 in Appendix C). However,

only an outline of a proof is given by him. We shall now prove this

fact in detail.

Theorem 4.S.3

Let JN = (M,u,u,P) specify an open Jackson network that satisfies

the conditions of Theorem 4.S.1.

Then, its equilibrium solution vector q“ is a long run vector.

Proof

It

process

suffices to show that the recurrent states of the global state

are irreducible (see [Cil] p. 264). To do this we show that

the zero state 0 4 (o,...,O) is accessible from every state

v= (nl,....%) ~o. It suffices to show that VI ,_v for every pair

of adjacent states v’ and v such that v’ = v + e: for some 1 ~ i s m
J.

(ei is the unit vector with 1 in the i-th coordinate).

result v’ ~ e then follows by an immediate induction

The desired

on IIv’11.



R 175 <E

2%!
e-!

r-

Now, since the network is open there is a sequence of distinct
:R9
<.6
<.n
,-

nodes j1,j2,...)jk such that
?y
1$-
rr

(1) pijlpj~j2...pjkO >0
ts

k+l
Consider the sequence of adjacent states {v }E L=()’wheke VO = v’,

‘k+1 = v andv2 = Vk ~ - e. lS&5k. We show that
JR-l

+ ej~,

P (t) > 0 for O S 2 ~ k and t > O,by using the integral represen-
‘!tvfi+l

tation (G) in Sec. C.1 of Appendix C for the functiohs p~ivk+l(t) viz.

because ~k + vk+i, O S k 5 k. However (see ibid.),

Substituting (3) in the term v = Vg on the right hand side of (2)

yields for t > 0,

J
-=v~+l(t-x)

(4) p (t) 2 ; (x) Cv rv ~ e dx k
‘EVA+1

o
‘kvE l!,R !t+l

t

J
:-c x -Cv

‘kc r
~+1 (t-x)

e e dx.
‘k ‘Rvg+l

(1

Observe that r > 0 for all O ~ 1 ~ k since
‘!LV%+l

Cf.p. .
I lJ1

r = >0
Vv = =V!vl
01

c“
o

and u“ P“ “31 JLjg+l
r = >OforlSE~k,
‘EV!2+1 CvE

due to (1).t Hence,

(s) p~Evk+@E) ? o for some tk > 0 .

‘The r
VRV%+J

are the conditional probabilities that the state will

jump from VR to v8+l given that a jump has taken place.
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Now, applying repeatedly the Chapman-Kolmogorov equations gives us

(6) pv,v(&J =
i?w?+:tkl ‘ 0.!?=0 =

Consequently, v’ ~ v as required.

a
We note in passing,that Theorem 4.5.3 holds for the networks of

Theorem 4.5.2, but it does not hold, in general, for arbitrary ones. #

Also, the state process need not be recurrent in mixed networks: For
B

example, transient states are engendered by putting ni > 0 in

v= (nl,....%) forany open node i with 6i = O. . ,1

Even if a mixed network has an equilibrium vector q“, it may not

be unique,because the asymptotic state of closed subnetworks does .de- B

penal

orem

on the initial conditions.

Our next step is to exhibit to what

4.5.1 is necessary for existence of

networks.
(s.

A requirement of the form ~ < 1 is
i

extent condition (a) in The-

equilibrium in mixed Jackson !a

an “obvious” necessary condi-

tion for equilibrium, provided 6 coincides with the vector of equili-

8
brium traffic rates through nodes.

We shall now show that this intuition is largely justified. For-
11

really,we prove

Theorem 4.5.4 B.
(M,u,o,P) specify a mixed Jackson network that possessesLet JN =

an equilibrium vector q“ for its state process. For any t 2 0,
s

let E(D(t,t+l]) ~ (E(Dl(t,t+l]),....E(Dm(t.t+l])).

Then,E(D(t,t+l]) satisfies the traffic”equation,provided q(0) = q“. I
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Proof
m

Since Di(t) = z Aij(t) , it follows from Theorem 4.2.1
j=O ~

t

(1) E(Di(t))= ~ oipij ~Pr(Bi(x)=l)dx = ui-fir(Bi(x)=i)dx.
j=O o 0

In particular,

t+l

J(2) E(Di(t,t+l])= E(Di(t+l)) - E(Di(t)) = Oio Pr(Bi(x)=l)dx.
.

t

By the equilibrium assumption on {Q(t)}t>o it follows that each

{Bi(t)}t20 is in equilibrium and thus Pr(Bi(x)=l) = const. for all

Xc(t,t+l]. Hence,(2) becomes

(3) E(I)i(t,t+l])= csiPr(Bi(t)=l)= uiPr(Qi(t) > 0).

Next, we apply generating function methods to the birth-and-death

equation (F) in Sec. 4.2. The generating function of q“ is defined by

(4) @(zl,....zm) ! x q: “ ; Z:i
v=(nl,....nm)?o i=l

and it exists in the domain {z = (Zl,....zm). lzil<l,l~i~m} J

provided we define O0!?1,

For each v = (nl,....nm). multiply both sides of (F) in Seci
m

4.2 by r] z~i,and sum the outcome over v = (nl,...,nm) z O. Since the
i=1

left hand side of (F) in Sec. 4.2 is always zero for q“ (see Theorem

C.3.1 in Appendix C), we obtain after some algebraic manipulation

(5) 0 = f O(z],...>zm)ai[zl]l] +
i=l

2 [0(%1~.--szm) - ‘(z~} ‘i,...,zm)]uiqi[~ -.... 1] +
i=l i

5 h(z,,..o,zrn) - No,,...,,., z..,z )]cr.p..[~- 1]

i=~ j=~, J In J J1 Zj

j+i



178

Here and in the sequel Oi indicates a zero in the i-th coordinate and

similarly for li.

Observe that by setting Zk = 1 in O(zl,....zm). the resulting

function @(zl,....lk.zm) is precisely the generating function of the

process (Ql(t),...,Qk-l(t)>Qk+l(t)3”.”~Qm(t)),subject to q(0) = q“;

thus, @(z~,....lk.zm),zm)= ‘(z~s””o~zk_l~zk+~>...,zm)~ Consequently,

whenever we set Zk = 1, k # i for any fixed 1 s i s m, (5) reduces to

(6) o = ‘(zi)ai[zi-l] + [@(zi) - ‘(”i)loiqi[& - 1] +
i

fi[w.)- ‘$(zi,oj)]crjpji[zi-l]+
j=~ 1

j+i

5 [@(zi) - O(oi)]csipij[+ 1]
j=] i
j+i

0< lZil s 1.

After collecting terms,(6) becomes

(7) o = (O(zi)ai + 5 to(zi) - ‘(zi,Oj)lojPji)[zi-ll +
j=l
j#i

[@(zi) - Q(oi)](uiqi + 5CLP..)[A-111 lJ Z.
j=l 1
j+i

o < /zil s 1,

and a further simplification of (7) yields

(8) O = (@(zi)Oi + ~ [Q(zi) - ‘(zi,oj)]ajpji)[zi-ll +
j=l
j+i

,

[@(zi) - W3i)]cli(l-pii)[+- 1]
i

()< Izil < 1.



For O < lZil K 1 we may divide both sides of (8) by zi - 1,
ifi
<..?
l.-
.W

whence [8) becomes
w-
m

m w. .

(9) [@(zi) - @(oi)]ui(l-pii) = (Q(Zi)ai + ~ [“(zi) - ‘(zi,oj)]ajpji)zi
j=l
j+i

0< ]Zi] < 1.

n.

Equating coefficients of the zil on both sides of (9) gives us

(10) Pr(Qi(t) = ni)csi(l-pii)=

pr(Qi(t) = ni-l)ai +

~[Pr(Qi(t) =ni-l)-Pr(Qi(t) =ni-l,Qj (t) =O)]ojpji
j=l
j#l

l~ni<ca.

For each 1 S i S m, sum the system of equations (10) over 1 ~ ni<m.

We get
m

(11) Pr(Qi(t) > O)ai(l-pii) = ai + ~pr(Qj (t) ‘ O)ujpji
j=l
j+i

l<i<m.

Substituting (3) in (11) and rearranging its terms gives us

(12) E(Di(t,t+l]) = ai + fE(Dj(t,t+l])pji , l~i~m

j=l

Comparing (12) with (B) in Sec. 4.4 ,showsthat E(D(t,t+l]) does

indeed satisfy the traffic equation, for any t ~ O. •1

Corollary 4.5.1

IfJN = (M,a,a,P) is a mixed Jackson network in any equilibrium

q“, then

a) the associated traffic equation always has a solution 6* defined by

6
*A
= E(D(t,t+l))
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where 6’ depends on the equilibrium vector q“.

b) E(D(s,u]) = ~y(u-s) for anY s ~ u.

t+l

) c) 6;
J

= Ui. Pr(Bi(x)=l)dx S ai , lSiSm, foranyt20.
u

t

We now refine part (c) in the above corollary, as follows.

Theorem 4.5.5

Let JN = (M,a,u,P) specify a mixed Jackson network. If there is

an equilibrium vector q“ for {Q(t)}t20,then

(a) Pi < 1, for every node i with pii z 1
* ~;

A
where p. = ~ and 6; = E(Di(t,t+l]) for”any t z O .

1 i

Proof

By c) of Corollary 4.5.1 the traffic solution 6* ~ E(D(t,t+l])

satisfies

(1) d: ~ Oi , lsi~m.

Suppose, however, that there is icM with pii < l,but ~i = ai.

Then by c) of Corollary 4.5.1 we get Pr(Qi(t) > O) = 1 whence

(2) pT(Qi(t)=O) = O

We proceed by induction. Suppose that

[3) pr(Qi(t)=ni-l) = O .

Setting (3) in (10) of Theorem 4.5.4 yields

(4) Pr(Qi(t)=ni)cri(l-pii) = 0,

By assumption pii i 1, whence from (4)

(5) Pr(Qi(t)=ni) = O

as a. > 0 always.
1
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But (5) shows that every state of {Q(t)}t20 is transient,which is

impossible in view of the fact that it has an equilibrium vector q“

(see [Cil] p. 263).

We conclude that 6i = ai is impossible for nodes i with pii f 1,

so that (a) follows from (l). ❑

We can now sum up our discussion of state equilibria situations of

open and autonomous Jackson networks with single server nodes.

The following theorem characterizes existence of equilibrium in

mixed networks.

~heorem 4.5.6

Let JN = (M,q,o,P) specify a mixed Jackson network. Then,

the network has a state equilibrium vector q“ iff the following two

conditions hold:

a) the associated traffic equation has a traffic solution

(s* ~ 13(ll(t,t+l]), t ~ 0;
*..

b) P.@ f 1 for any completely open node.
1

i

Proof

(~) Suppose the network has an equilibrium vector q“.

Then a) holds due to part a) of Corollary 4.5.1,andb) is impliedby

(a) of Theorem 4.5.5 (observe that in equilibrium every completely

open node i always has pii z 1).

(~) Suppose a) andb) hold,

Denote by J(vA) the Jackson solution (see (b)in Theorem 4.5.1)for

the completely open part A.
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Denote by qO(llvRkl1) the Gordon-Newell SOlution (see (b) ‘n ‘heorem

4.5.2), obtained for each recurrent irreducible node set Rk, kcK.

Having chosen a distribution for each flRk,kcK (recall that #Rk ‘s

the total number of customers in Rk in equilibria), we define

(1) G(vR)2 Sq~(n)pr(#Rk=n) =q~(llvR ll)Pr(#~=l IvRll).
k n=O Rk %k

k

Lemma 4.4.2 guarantees that the remaining node set D has a unique

1

A l,if~D=O
traffic solution 6D = O. Denote Z(VD) = .

0, otherwise

Finally, it can be verified by direct substitution into the

birth-and-death equations (F) in Sec. 4.2 that

(2) q: Q J(VA)”Z(VD)”ll G(VRk), v = (nl,....nm)
ksK

is an equilibrium vector.of these equations. n

tion

from

Condition a) of Theorem 4.5.6 agrees with the heuristic observa-

that a network containing a closed subnetwork, which is accessible

an inlet, cannot have an equilibrium vector.

Intuitively, in this case, customers would be “trapped” in that

closed subnetwork,and their number would grow indefinitely.

Theorem 4.4.1 guarantees that this does not happen, because

of a traffic solution 6 is equivalent to the requirement Ui

Indeed,

existence

= o.

Condition a) of Theorem 4.5.5 agrees with the intuition that in

equilibrium each node i, exdluding the trivial case Pii=l> must have

service rate u, which exceeds the influx rate d: of customers into i.J. 1.

Otherwise, customers would “pile up” in that node

grow indefinitely.

We now proceed to characterize uniqueness of

vector for mixed Jackson networks.

and its line would

an equilibrium
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Theorem 4.5.7

Under the conditions of Theorem 4.4.6

a) there is a unique equilibrium vector q“,

iff

b) the traffic

Otherwise, every

tor q“ such that

Proof

equation has a unique solution 6.

Cn

initial condition q(0) determines an equilibrium vec-

Condition a) holds iff the equilibrium vector defined in (2) of

Theorem 4.5.6 has no G factors.

Now,this happens iff the network has no closed nodes (i.e. iff the

network is open). But then we know by Theorem 4.4.2 that a Jackson

network is open iff it”has a unique traffic solution.

Next observe that q(0) determines the asymptotic distribution of

total number of

[KS1] p. 52 for

turn determines

customers in each Rk and hence of #Rk, ksK (see, e.g.

absorbing probabilities of single customers). This in

the choice of the G(v ) in (2) of Theorem 4.5.6.
Rk u

The foregoing discussion shows

cess of a mixed Jackson’network can

that in equilibrium, the state pro-

be studied separately for the com-

pletely open part A atideach irreducible recurrent part Rk, kEK. The

remaining node set D is devoid of customers with probability 1, and

for all practical purposes can be removed from the network.

It is also interesting to note that the equilibrium state behavior

can be completely determined from a simple algebraic equation--the
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traffic equation--as far as existence, uniqueness and form of equilibria

solutions are concerned.

4.6 Total Service Times and Number of Visits to Nodes

In this section we investigate two customer-orientedbehavioral

frames: total service time

The totul serv{ce time

times the customer receives

and number of visits to individual nodes.

~of a customer is the sum of all service

at the various nodes of a Jackson network

from the instant of his arrival at the network until he exits the

system at some outlet. The totai! service time of a custome~ in the net-

.
uork, given that his entqj node to the netwo?k was i, is denoted here Si.

OuY main tool of analysis will

case the Laplace-Stietjes transform

relevant distribution functions,

be generating functions--in this

(abbreviated LS transform)--of the

The 1.Stransform of the distribution of~ is defined by
co

.03

where dF3(x) designates the Laplace-Stieljesmeasure induced by the

distribution F5 of ~. Likewise, fi(~) denotes the LS transform of the

distribution of ~i,and vi(c) denotes the LS transform of the distribu-

tion of the service time Si at node i. Observe that

because node i accommodatesexponential servers.

A (fNext, let f be the column vector f = ~,...,fm)T and q the column

vector q $!(ql,....qm)T where qi ~ p. Finally,let r be the
10”

diagonal mattix whose i-th diagonal ent~ is Oi.
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Theorem 4.6.1 (cf.[BMZl],Theorem 5.1)

Let .JN= (M,u,u,P) specify

(1) f(c) = lJ-l(C)q

where lJ(?i)= ‘Uij(c)l is an mxm

(2) Uij(g) Q (++ l)gij - pij

i

a Jackson network. Then for c > 0

matrix defined by
l--
;I*.
<m
<,-,
P-

P?l

,-

l-r

!%
where 6.. is Kronecker’s delta.

lJ

Proof

A customer arriving at node i receives a service time Si with LS

transform vi(g). Then, he either exits the network (with probability

qi) or is routed to node j (with probability pij), whereby his residual

total service time is ~j with LS transform fj(~).

Since all individual service times are mutually independent, we

are led to the renewal-like equation

(3) ‘i(~),= [qi + SPijfj(C)lvi(ti; , I<i<m.

j=l

Substituting vi(c) into (3) from (B) and switching to vector notation

gives us

(4) (CI + r)f(~) = r(q + pf(~)) .

Premultiplying (4) by r-land factoring out f[c) yields

(5) (Cr-l + I - p)f(g) = q .

Now, define

(6) lJ(c)9~r-1 +1-p.

Then U(G) coincides with (2), and (5) becomes

(7)

It remains to show that U(L) is invertible for any g > 0.

Now, U(C) can be written as
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By uniqueness of the solution f(~) of (4) we conclude that

(13) f = f(~) ~ lim f
(n)

(pointwise limit)
c=
m?

n- <7
r-

so that f is indeed a possibly defective generating function. u
:m
4.*
G&
.-
l“r-
)--

l-?-

The defect of each fi(~) is interpreted as Pr(~. = w). To compute
E=

1

the defect we

Theorem 4.6.2

Let JN =

emp1oy

1 Sism, Pr(5i

or alternatively

of the equation

(1) u=q+Pu

t
(cf. [BMZ1],Theorem 5.1)

(M,a,a,P)specify a Jackson network. Then, for any

in the column vector

‘n) 1 f i Sm, constitutes the minimal solutionPio > -

of unknowns u = (Ul...um)T.

Proof

The defect of each fi(~) is

(2) 1 - lim fi(@ = Pr(Si = ~).
q+l)+

By (11.c) in Theorem 4.6.1 we know that for any c ~ O, f(n)(c)+f(c)

as n-. Furthermore, since vi(c)+vi(0) as G+-o+for each i (see (A)),

it follows from (10) in Theorem 4.6.1 that for every n = 0,1,*..

(n)(o)as ~+0+, Yf(n)(G)+f b induction on n.

Using these facts we obtain from (2)

(d ~cl ~lim lim fi (n)(0) = i= l~m fi f(m)(o) = fi(o)
w g+0+
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because monotone limits are interchangeable.

Next, denote f(n)(~) = ~A (n)
and set c

Theorem 4.6.1. Premultiplying the outcome

gives us

(4) u(’) = O and U(n+l) sq+Pu(n),

= O in equation (10) of

by r-l for each n = 0,1,...

n= 0,1.... .

Now,{U(n)}nmo is a monotone and bounded sequence and thus its=

pointwise limit u exists. Sending n- in (4) shows that u satisfies (l),

and by induction on n one can show u to be the minimal non-negative

solution of (l). Hence

(5) Fr(~i c m) = fi(0) ~ Ui ., l<i~m

and it remains to show

(6) Ui= @lpiO(n) , 1 <i <m .

Expanding (1) by components and writing piO for qi gives us
m

(7) Ui =
‘iO + ,~lpijuj ‘

1 <i <m .

A standard result in Markov chain theory (see [Fl], Sec. XV.8,

Theorem 2) shows that the minimal non-negative solution of (7) is pre-

cisely the probability of eventually being absorbed in node O, given

that the initial node is i. Thus, (6) holds as required. •1

The defect of f(~) can now be characterized in terms of the

topology of the network as follows.

Corollarv 4,6.1

For any Jackson network

a) Pr[5i t ~) = O , i-ficC .

b) Pr(?i < ~) = 1 , if icA .

i
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c) ()<pr(si<m) <l, if id)-A . ‘E

It is interesting to note that f(~) has a relatively simple form.

The representation f(~) = U-l(G)q shows that each fi(~) is a rational

function whose denominator is a polynomial in c of degree m at most.

This is so because the denominator of each entry in U-l(C) is the deter-

minant of U(C), and by definition of U(L) it is seen to be such a

polynomial. Consequently, f(~) is a transform of mixed exponentials.

The comments above are also pertinent to the unconditional total

service time ~ due to the following.

Lemma 4.6.1 (cf. [BMz1]), Sec. v)

Let JN = (M,a,u,P)

function of~is g(g) =

Proof

specify a Jackson network. Then the generating

r“f(~) where

The probability that a customer

‘i ai
—= — . Hence the generating
$a, 1141
j=l J

m

r~~.
Hall

enters the network at node i is

function of ?’is

~(G) = Zrifi(c) = r.f(g) as required.
i=l ❑

Corollary 4.6.2 (cf. [BMZ1], Sec. V)

E(F) = ~riE(?i) .
i=l

Consequently E(F) K cc iff a-
A

= O, i.e. no closed node is accessible

from an inlet. This is equivalent to existence of a traffic solution

by Theorem 4.4.1. ❑
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We now proceed to compute E(F) when it is finite. Clearly, in

s
this case, it suffices to compute E(?) for open Jackson networks.

Theorem 4.6.3 (cf. [BMZl],Theorem 5.2)

Let JN = (M,u,o,P) be an open Jackson network. Then E(F) = IIPII

IPII
~1

where p Q (y,...,>).
m

Proof

*
By Lemma 4.6.1, the generating function of S is

(1) g(C) = r-f(c) .

[Jsingin (1) the moment property of generating functions (in our case

LS transform) we pet

(2) E(s)

where the

Next,

=- Iim, r.f’(~)
~+o+

prime indicates differentiation with respect to C.

differentiate both sides of

(3) U(c)”f(c) = q , ~>().

(Cf. Equation (1) of Theorem 4.6.1.)

We obtain

(4) u(c)”f’(G) + U’(c)”f(c) = o , g>o

and since U‘l(c) exists by Theorem 4.6.l for c > 0, (4) becomes

(5) -f’(c) = U-l(c).ut(q).f(c) > ~>o.

Now, for open networks, the defect of each fi(g) is

(6) 1- Pr(5i < ~) =l-limp~~)=l-l=O
nx

because every node is transient in ~save O which is an absorbing node.

Therefore

(7) f(c) # UT

where u is the row vector of 1’s.

R
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Next, since U(g) = gr-l + I - P (see (6) in Theorem 4.6.1), we have

(0 u’(c) = r-l.

Finally, we assert that

(9) U-l(~)~(l - P)-l = fiPn .
<+0+ n=o

To see this observe that (U(g).r)”l= RC where RC is defined as the

resolvent operator for (1 - P)r at the value L (see [Tl] Ch. 5, Sec.

5.1). The origin belongs to the resolvent set as RO = (l-P)-l exists.

Hence, Rg-+Ro as C+O+; i.e. I’-lU-~(’~)---@r-lu’l(0) (see ibid.).

(9) now follows,since U-l(0) = (I - P)-l by (6) in~eorem4.6.l.

Substituting (5) into (2) and using (7), (8) and (9) gives us

(lo)

tbt

(11)

E(~) = lim r.U-l(~)qu’(c)‘f(~)= TO(I - P)-l~r’-~.uT.
<+0+

Acx
Substituting r = — -1 Aand denoting u = (~

IPII
u~ %)...,om , we see

(10) becomes

E(=) =—
11:11 ‘r

- P)-l(O-l)T =L

Ilw
(a-y =L!.!-

1141
since d =

-1
a(I - P) from the definition of the traffic equation. D

We now proceed toinvestigate the number of times K that a
.i’

customer visits node i during his stay in the network. LetK denote

the vector K ~ (Klj....Km).

Theorem 4.6.4 (cf. [BMZl],Theorem 6.1)

Let JN = (M,a,a,P) specify a Jackson network. Then

(1) E(K) = r(I - P)-l

Aa
where r = —

llw “
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Proof

Let K.. be the number of visits of a customer to node j, given
lJ

that his entry node to the network was i. It is a well known result

(derived from the finite hlarkovchain with transition matrix~) that

E(Kij) = ~ l?~~)(see [KS1] p. 46).
n=0

hence the unconditional number of visits Kj to node j satisfies

E(Kj) = Sri ~p~~). In matrix notation this is expressed as (1),
i=l n=o

which was to be proved.
•1

Remark 4.6.1

Act
Since r = — , we have E(K) =~(1 - P)-l. Consequently,

1141 1141
E(K) < cuiff the traffic equation has a traffic solution 6. •1

Since in this case a~ = O, we have that E(K.) = O for any ic~.
1

Taking 6’ ~ (6A; 0) we can write

satisfies the normalized version

equation d = a + ap, obtained by

the solution d--by Ilall. Ifno

Thus, E(K) then
‘(K) = - “

E(K) . r + E(K)P of the traffic

dividing the forcing term a--and

traffic solution exists, then

E(Ki) < ~ for iEA, E(Ki) = O for every i which is not accessible from

any inlet,and E(Ki) = w for all the other nodes.
1

Remark 4.6.2

The expected total number of visits to nodes by an arbitrary

customer is IIE(K)II.

If E(K) z ~, this becomes M

11~11 “ c1



4.7 Traffic Processes on Arcs
<,-
Gm
,...
~w

In this section we investigate traffic processes on the arcs of
m-
r~

~%

Jackson networks. Recall that.{Aij(t)}t>O is the traffic process on

arc (i,j),whereAij(t) is the customer count on it during the time

interval (O,t].

In the process, we isolate a class of arcs whose traffic processes

will be shown to be Poisson processes, when the network is in equili-

brium. ‘This result may be viewed as a generalization of Burke’s The-

orem (see [Bl])which states that the traffic process on the outlet of

a M/M/l queue,in equilibrium,is a Poisson process. The generalization,

however, is stronger in that we show that the set of arcs to which it

applies includes the outlets of Jackson networks. Moreover, for cer-

tain sets of such arcs, we will show that the Poisson traffic processes

on them are mutually independent processes.

The treatment relies heavily on the switching matrix P, or equiva-

lently, on topological properties of the graph associated with the

underlying Jackson network. Recall that the associated graph can be

viewed as a representation of the accessibility relation ~ (see Defi-
1

nition 4.3.1) among the network’s nodes. The communication relation

~ (see ibid.) is easily seen to be an equivalence relation; as such

it induces a partition into equivalence classes, each consisting of

mutually communicating nodes.

Let us call each such equivalence class a oonponent

work, and for every node i, let [i] denote

iEC.

The accessibility relation ~ on the

the component

node set of a

of the net-

C such that

Jackson network

induces a partial ordering on its set of components. This partial order
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will also be denoted by ~; namely Cl ZCz iff there exist i~Cl and

1
jEC2 such that i -j.

It follows that if Cl x C2 then i e j and j ~i for any
I....

iECl and jEC2. The partial ordering of network nodes and com-

ponents induces a hierarchy of Jackson subnetworks as follows. ‘1

Definition 4.7.1

Let JN = (M,a,u,P) specify a Jackson network and let L CM.
I

We say that .JN(L)~ (L,aL,oL,pL) is a purtial netiozk of JN if

a) icL and j v i ~ j~L. ❑ E

Remark 4.7.1

Equivalently, L in Definition 4.7.1 satisfies

ieL and j#L ~

Observe that

is self-contained

Jackson network.

ignored because a

Definition 4.7.2

Let LCMbe

=0
‘j i

❑

a partial network of some underlying Jackson network

.1
in the sense that it can be analyzed as a full-fledged

As a matter of fact its complement can be completely
I

partial network is not accessible from its complement.

8

a subset of nodes in a Jackson network JN = (M,a,o,P). B

Letl 9 {i: iEM and HjeL such that i ~ j}. D
Then JN(~) 4 (r,a~> L Lrs*,P.)is called the pmtiiaZ n.etvork generated

bg L. ❑ 1

Notice that the partial network generated by a subset of nodes L,
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contains all the components [i] such that icL together with all the
..
r-
:W
4,*

components from which L is accessible.
<,0
.-
-1-

In addition to the hierarchy of partial networks, the accessibility
;;
Cz

relation z may be used to partition the arcs of a Jackson network

into two claases as follows.

If Cl and C2 are components such that Cl ~C2, then C2 ~C1.

.
Thus, arcs fall into two disjoint categories: those between components

and those within components. The former set may be characterized as

follows.

Definition 4.7.3 (cf. [BM1], Definition 3.1)

JN =

a)

An arc (i,j), 1 ~ i Sm, O ~ j ~ m, in a Jackson network

(M,o,u,P) is called anaci-tczrc if

~j>Obutj~i.P“ ❑

Intuitively, an exit arc (i,j) is characterized by the fact that a
.

customer that takes it will never Yeturn to i for further services. In

this respect, an exit arc behaves much like an outlet. Indeed, every

exit arc is an outlet of some partial network, and this fact provides

the basis for the aforesaid generalization of Burke’s Theorem.

Theorem 4.7.1

Let JN= (M,o,u,P)be a Jackson network, and let ~(t) be any sub-

set of the traffic processes {Aij(t]}t>O, 1 ~ i ~ m, O f j 5 m, on some

subset of arcs.

Then (Q(t); ~(t))t>O is a conservative Markov process with station-
1’

ary transition probabilities.
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Proof

For any s ~ t, the stochastic equation

(1) (Q(t)i(t)) = (Q(s);I(s)) + (A(s,t];~(s,t])- (D(s,t];8)

holds almost surely, where 9 is a vector of zeros.

The rest of the argument is analogous to the one used in the proof

of Theorem 4.2.2. •1

Let JN(L) = (L,aL,uL,PL)be a partial network ofJN = (M,a,a,P),

where without loss of generality L 911,2,...,1}. Denote

~A
= {O}u (M-L).

If (i,j) is an exit arc, then we write Eij(t) for Aij(t). The

vector of traffic processes on the outlets of JN(L) (which are all exit

arcs) is denoted by EL(t). Thus,

EL(t) A [EIO(t),Eli+l(t),...,Elm(t);”..,EkO(t),ELk+l(t),..s,ELm(t)).

By virtue of Theorem 4.7.1,(QL(t);EL(t)) is a Markov process,and in

view of Appendix C we may proceed to treat the appropriate birth-and-

death equations.

Denote Pt(nl, nk; klO,klk+l,....klm.kkO,kkl+lkl+l,...,kLm) ~....

Pr( (1 fl:[(Qi(t)=ni)(1 (Eij(t)=kij)])
icL jEL

for any t ~ O and any vector of non-negative integers

(nl,...,nm;klO,klg+l,...,klm,..,.,kL0,k22+l,...,k2m).

With a dot to denote a derivative with respect to

and-death equations of the process (QL(t);EL(t) are

t, the birth-



g:t(nl$
P.-

. . . .

‘i-l ‘“o”’%; k k )u.b(ni) + *T
lo’klg+l’”””’ km 1 v-

Pr

~ ~~t(nl,...,ni+l, ng;,ng; klo,klk+l,...,ki~l, kkm)ui~ijb(kij)+ij)+ ‘E%
isL JGL

~ ~pt(nlj...jnl,l,nj+l,j,nL;..,nL;k10$k12+l,...2kLm)~jPjib(ni) -
ieL jeL

pt(nl,...,ng; klO,klL+l,....kgm)[&ai + ~ ~u.p. .b(ni) +
isL icL jsL”l 1’

~ ~Ujpjib(nj)]
ieL jcL

j+i

for any (nl,...,ng; klo,klg+l,...,kflm) 2 0 .

O,ifni=O
Recall that b(ni) S

l,ifni>O

Theorem 4.7.2 (cf. [BM1], Theorem 3.1)

Let JN(L) be a partial network of JN = (M,u,a,P) in equilibrium.

Then, the random variables in the set (QL(t); EL(t)) are mutually

independent for each fixed t z O. Moreover, each E..(t) in E,(t) is
~J u

Poisson distributed with parameter 6.p..t.
1 lJ

Proof

We may assume that the network is open:,becausethe closed”part

has no outlets except for trivial ones on which the,traffic process

equilibrium is zero almost surely.

In view of

assumption is

the birth-and-death equations (A), the equilibrium

c

in



\ O, otherwise

B

due to Jackson’s Theorem (see Theorem 4.S.1). We shall analyze (A) by

means of generating functions, similarly to the equilibrium analysis of I

the state process. In our case, the generating function is the

k(m - 1 + 2)-dimensional z-transform defined by I

9

8
where the sum ranges oveT all non-negative integer vectors

v= (nl,....nL. klO,klL+l,....kLn). I

The z-transformedversion of (A) is obtained by multiplying each
. k..

12 I 51, Iyijl<l
I

equation corresponding to each v by ~ ll-Z~l*Yi~J, i
iEL jcL

s

I0 ~ 1 and then summing the resulting equationswith the convention O ,

over all integer vectors v = (nl,....nR. k~o~klk+l~”””>kkm)~o.

I
After manipulating the above summation and collecting terms,

analogously to the procedure in Theorem 4.S.4, we obtain
,1

(3) it(zl,...,zk; Y1o,YIR+l,...,Yh) =

i:y’l’
....zk. Y1OJY1Q+1’‘00,y2m)ai[zi-1]+

@t(’l, o.... ?3++.,...,zg; Y~09Yl~+ls
1 . . ..Y~m)luipij[ Z.

1

OJZ1,....,., Z9;,Z9;
J Ylo’ylfl+l’●O-,YLm)lojpji[~- 11

j



Here
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Oi stands for Zi = O.

The initial condition (1) is z-transformed into

@&, ‘**>z~;y]o>ylQ+l$O*oSy~m ) =1-r~ icL1-Pizi “

:Z
<“2
r-

We shall now show that equation (A) and initial condition (1) are

satisfied by

(5) p;(nl,....nk.klo,klfi+l,kgm)kgm) ~

..t (6iPi-t)kij

H(l-Pi)P~i 11-e-6ip1J k ~ .
icL jcL ...

1]

Equivalently, one has to show that (3) and (4) are satisfied by the

z-transformed version of (5), namely by

(6) @;(zp
~-Pi

.*.SZ1;YIO>YIR+l>...>Ykm)—
~.p.gt(yij-l)“~ellJ

= i~L1-pizi jei

To prove this we use the following id~ntities:

(9) @;(z~““”zfl;Ylo$Yl~+~“““Y~ml - ‘~(z~.flooi.c.z~;y~o,y~~+~e‘“y~m) =

‘3;(Z1“““zfl;Ylo3Yl~+l●.*YRm)“pizi 3 1 ~ ifm .

for any i=l,2,... m.

Equations (7) - (9) maybe verifiedby direct calculation.

Now, (7) shows that that @~(zl,
....22; Y1OJYII+l“O.Ygm) Satisfies

initial condition (4).

Setting identities (8) and (9) in (3) and writing O: for

O:(zl,...*zi; Y ,y10 lR+l$O.m.Ykm) gives us

I
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Since O; > 0 for all t 2 O,whenever O z Izil S 1, Iyijl 5 1, we may

divide both sides of [10) by 0~. Noting that aipi = 6., 1 S i S m,
1

we can fu~ther simplify (10) to

(11) z Z-dipij(yij - 1) =
icL jcL

~ai(zi-l) + x E-dipij (y..-).) + ~ ~6.p.. (Z.-).)
icL isL jcL

lJ 1
icL j&L ] lJ 1 ~

j+i
()<lzilsl , lYijl~l ; i~L , j~~.

After some manipulation and regrouping of terms in (11) we obtain

(12) ~ Z-dipij(yij-yij) - (~ ~d.p..-~ai) =
ieL jsL isL jc~ 1 1’ ieL

Z(ai+xrsjpji)zi - Z (~-dipij+~ aipij)z
ieL jCL

i
icL jcL jEL

j+i j+i

8

Sec. 4.4 it follows that

I
= tii(l-pii) , 1 S i5m .

1

Now, from (B) in

(13.1) ai + ~djpji

jsL
j#i

(13.2) ~d.p.. + ~~ipij = Z~.P = 6i(l-pii) , lfi<m
jet 1 lJ jEL 1 ij

j=O
j+i j+i

and by Theorem 4.4.4

(13.3) z m.po. =x.
ieL jet 1 lJ iEL i“
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x?
<-?

In view of the identities given in (13.1) - (13.3), Equation (12)

is seen to reduce to an identity.

This completes the proof of the theorem.

Lemma 4.7.1 (cf. [BM1, Corollary 3.1)

s Under the conditions of Theorem 4.7.2, the random variables in the

process {(QL(t); EL(t) - EL(s))}t>s are mutually independent for every

fixed s, s 5 t.

1
Moreover, in this case,for any fixed s, each Eij(t) - Eij(s) in

EL(t) - EL(s) is Poisson distributed with parameter 6ipij(t-s).

Proof

s The process {(QL(t); EL(t) - EL(s))}t>s is Markovian by an

D
argument identical to the one in Theorem 4.7.1. In view of the time

invariance of the birth-and-death equations (A), they still hold when

I t is replaced by u it-s. In particular, the initial condition (1)

in Theorem 4.7.2 holds for u

1

~ o. Consequently, we obtain the required

independence. It also follows that each Eij(t) - Eij(s) is Poisson

distributed with parameter &ipiju = dipij(t-s), for every fixed u 2 0.
•1

B Notice that the mutual independence,alluded to in Theorem 4.7.2,

applies to each fixed t. We can, however, prove a stronger independence

E result with the aid of Lemma 4.7.1.

I Lemma 4.7.2 (cf. [BM1], Theorem 3.2)

I LetJN= (M,u,o,P) and JN(L) be as in Theorem 4.7.2. If JN is in

equilibrium, then for any fixed s and t such that O < s S t we have
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that every event AE~({(QL(U); EL(u) - EL(t)): u 2 t})is independent of

every event in a(EL(t) - EL(s)).

Proof

We show first that for every nL = (nl,....ni) ~ O and

k )? Owe have
‘L = (k10,k12+l,..., km

(1) Pr(AIQL(t)=nL, EL(t)‘EL(s)=kL) = Pr(AIQL(t)=nL).

First, observe that for every interval (s,u]

(2) (s({Q(t): tc(s,u]}) 2 u({EL(t)-EL(s): tc(s,u]})

because the jumps of the process {EL(t)-EL(s)}tc[su] are determined bY
9

the jumps of the process {QL(t)}te(s,u]”

Therefore, it follows from (2) that

(3) AEU({QL(U): u .2t])

and (1) is true in view of (3) and the Markov property of {QL(t)~t20

(see Appendix C, Sec. Cl, Equation (C)).

Taking advantage of (1) and of Lemma 4.7.1, we compute

(4) p#(A,QL(t)=nL,EL(t)-EL(s)=kL) =

pdA]QL(t)=nL,EL(t)-EL(s)=kL)p~(QL(t)=nLsEL(t) ‘EL(s)=kL) =

h(AIQL(t)=nL)’p,(QL(t)=nL)%(EL(t) ‘EL(s)=kL) =

pr(A,QL(t)=nL)”pr(EL(t)-EL(+=kL) .

!3qnming(4) over all integer vectors nL ? O gives us

(5) P~(A,EL(t)-EL(s)=kL) = Pr(A}Pr(EL(t)-EL(s)=kL)

which was to be proved. •1

Intuitively, Lemma 4.7.2 asserts that the instantaneous independence

of the state QL(t) and the count EL(t) engender a stronger independence



203 .mL-
:=
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r-

whereby every increment of a past count EL(t)-EL(s), s : t, is independ-
;l=
<<m
<,fl
P-

ent of the future evolution of {QL(u)}u2t. But since the u-algebra
VT
l.-
r’r”
Rv

generatedby every future increment {EL[u)-EL(t)}u,t is contained in

the u-algebra generatedby the future state {QL(u)}u>t, we have in
-,

Corollary 4.7.1

The process {EL(t)}t>O has independent increments in equilibrium.

Consequently, for any icL and js~, ‘Eij(t)}t~~ is a poisson

process in equilibrium. u

We now prove an even stronger independence property of {EL(t)}t,O.

Theorem 4.7.3

Let JN =

(cf. [BMl],Theorem 3.3)

(M,a,o,P) and JN(L) be as in Theorem 4.7.2. IfJN is in

equilibrium,then the traffic processes in {EL(t)}t>O, are mutually

independent Poisson processes with respective parameters dip::t.t
L ‘J

Proof-

We already

Poisson process

Let 11:0 =

interval [O,t].

know that each traffic process Eij(t) in EL(t) is a

by Corollary 4.7.1.

to < tl

Define

< . . . <t r= t be any partition of the time

a set of events

‘This result agrees with more general results due to F. P. Kelly
(see [Kl] p. 5S3).



(n)for any choice of integers kii .

(n)It suffices to show that the events C.. are mutually independent.
1-J

Proof is by induction on r. For r = 1 we have

by Theorem 4.7.2.

Assume that the C(n) are mutually independent for every partition
ij

IIwith r-l division points,and show that this is true for every parti-

9
tion IIwith r division points.

By Corollary 4.7.1 we have
I

By the induction hypothesis

(4) pT(r~l nc!?)) = “1 llPr(C~~)).
n=l ieL lJ n=l icL

jSC jSt

Furthermore, by Lemma 4.7.1

On substituting (4) and (5) on the right side of (3) we get

I

which shows the induction step to be valid. •1 B

B
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Corollary 4.7.2
:&=
cm
<6

In particular, the traffic processes (EIO(t),....EmO(t)]. on the
,-
FT
m-”
rw

outlets of a Jackson network JN = (M,a,cr,P)in equilibrium, are mutually t%

independent Poisson processes with respective intensities 6iqi. n

The foregoing discussion allows us to identify the traffic proc-

esses on exit arcs of a Jackson network in equilibrium.

Corollary 4.7.3

Let JN = (M,a,u,P) specify a Jackson network. If the network is in

equilibrium, then the traffic process Eij(t) on each exit arc (i,j) is

a Poisson process with intensity d.p...1 lJ

Proof

Consider the partial network

to see that (i,j) is an outlet of

immediately from Corollary 4.7.1.

JN({~}),

JN({~}).

generated by i. It is easy

The required result follows

•1

The Poisson nature of traffic processes on exit arcs.ofa.

Jackson network in equilibrium has interesting ramifications as regards

the decomposition of the network into components.

J. R. Jacksonls cautious statement,that every node i in a Jackson

network JN = (M,a,u,P) in equilibrium behaves as ~fit were a single

M/M/l queue in equilibrium, can now be strengthened. The italicized

reservation in the above statement stems from the fact that it was not

known whether the arrival process {Ai”(t)}t>Ois Poissonjor equivalently,

whether the traffic processes in {(AOi(t),Ali(t),....Ami(t))}t>O are
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mutually independent Poisson processes which are in addition independent
9

of the service and switching processes of node i (as is the case in the

M/M/l queue). I

As a matter of fact, this is not the case in general, and we shall

qualify this statement in the sequel. Nevertheless, certain subnetworks I

which are not partial networks do more than behave as if they were
s

Jackson networks; it can be shown that in equilibrium they indeed are

Jackson networks.

Formally we have

Theorem 4.7.4

Let JN = (M,u,u,P)be a Jackson network. Then, inequilibrium,

every component C is a Jackson network JNC = (C,YC,UC,PC)where

Yi
A
= ‘i + ~djpji , for llnyi~C. ,

j#C

Proof

Let I(C) be the set of inlets of C, not including

network JN; that is,I(C) ~.{arcs (i,,j):i.cM-C,jzC and

inlets of the

P““ > o}.
1-J

Now, every arc in I(C) is an exit arc since it runs between dis-
1

joint components. Consider the partial network generated by the set

LA
= {i: ieMand HjeC such that (i,j)cI(C)}. Clearly the exist arcs in ~

I(C) a~e a subset of the outlets of this partial network. Furthermore,

the traffic process {Eij(t)}t20J (i,j)EI(C), are mutually independent B

Poisson processes

4.7.3.

Observe that

with respective intensities d.p. due to Theorem
1 lj’

9

u({E;+(t): (i,j)~I(C), t 2 O}) is independent of

a({Qi(0),A~(t),Sij (t): icC, Osjsm, t ~ 0}), because the fo~er is
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I

B

9

contained in a({Qi(0),A~x(t),Sij(t): i#C,O s j‘Sm, t 2 O}) (see Sec.,4..2).
r-
:m
<.Q
4,*

In particular, for each isC we may group (superpose)the independ- *-
FY
w-

ent Poisson processes {A~(t)}t20 and {Eji(t)}t>O, j#C, into a Poisson
r~
e%

process {A~x(t) + Z Eji(t)}t20 which has intensity yi as required.
j$C

Furthermore, the {A~x(t) + ~Eji(t)}t20 (ieC),the{Sij(t)}t20
j~C

(i&C, O sj Sin), and QC(0) are all mutually independent. We conclude

that, in equilibrium, JNC is a Jackson network by definition. ❑
....... -.. .-.— ..-.--J

Theorem 4.7.4 shows that every Jackson network may be decomposed

into components such that,in equilibrium,each is a full-fledged Jackson

network, which can be treated separately.

We remark that the results have been obtained for Jackson networks

with single server nodes.

We are, however, prepared

Conjecture 4.7.1

The results obtained thus

arbitrary number of servers in

to make the following

far hold true for Jackson networks with

each node. c1

In order to validate Conjecture 4.7.1, one has to modify the birth-

and-death equations (A) and attempt to verify that the alleged solution

/
still holds.

The rest of the argument is virtually unchanged. We shall not

undertake to prove or disprove Conjecture 4.7.1 in this

The intuitive basis for making Conjecture 4.7.1 is

properties of exit arcs. We observe that this class of

to a generalization of Burke’s Theorem,because exit arcs behave as

work.

the topological

arcs is amenable
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outlets in the sense that they don’t “affect” the component from which

they originate.

traffilc,and the

an exit arc will

Heuristically, this “effect” is carried by customer

lack of “effect” means here that customers that take R

never visit it again.

Thus,the independent increments of the Poisson counts on exit arcs
9

in equilibrium may be intuitively attributed to this inherent lack of

future effect.

Quite naturally, this situation begs the question whether on non-

exit arcs (i.e. arcs within components),the equilibrium counting process

is no longer Poisson. If this is true for every non-exit arc, then the

intuitive explication for the Poisson counts on exit arcs would gain in-

creased credibility. This would also lead to a characterization of

equilibrium traffic processes on arcs, and considerable insight into

them will be gained.

The salient feature of non-exit arcs is, of course, that customers

taking these arcs may revisit them with positive probability. In terms

of the associated graph, there is a cycle (closed path) that begins and

ends with each non-exit arc. This is due to the fact that non-exit

arcs are within components and these consist of mutually communicating

I
nodes. Thus,in contrast with exit arcs, customers that travel on non-

exit arcs do aarry future “effect” on them. As a matter of fact, part

of the customers in a past count increment on a non-exit arc will.

revisit it and contribute to future increment counts on the very same

non-exit arc. Thus, we cannot intuitively expect to have there inde-

pendent count increments in non-overlapping time intervals,even in

equilibrium.

The foregoing discussion leads us to state



209

Conjectu~e 4.7.2
:m.
<m
L,m

Excluding the trivial case pii = 1, the traffic processes on a
m-
FT,

b-

rT.

non-exitarc” (i,j) can never be a Poisson process or even have inde~ w

pendent increments. ❑

While at this juncture we are unable to prove Conjecture 4.7.2 for

every non-exit, we can, however, show that the traffic processes on cer-

tain subsets of non-exit arcs are not Poisson processes in equilibrium.

We know from Theorem 4.7.1 that every process (Q(t); Avw(t) is a

Markov process for any arc (v,w). However, in writing the @elevant

birth-and-death equation, one has to distinguish between two cases.

Using the previous notation we have:..

Case 1: V+w, l~v,w~m.

In this case we have
m

(la) ~t(nl,....nm.kW) = zPt(nl, ....nl.l,nm;kW)aiW)ai “b(ni) +
i=l

~pt(nl,...snj+ls~;kw)ujqjujqj+
j=l

~ 5pt(nl,...,n1,1, nj+l,j,nm;kW)~jpji)b(ni) .b(ni) +
i=l j=]

j+i

(j, i)#(v,w)

Pt (nl, . . . .nw-l,...,nv+l,nm;kWml)avpWavpW “b(nw)b(kW) -

m m

pt(nl,....nm.kW)[~ai + ~ujqjb(nj) + ~ ~ ujpjib(nj)]
i=l j=l i=l j=l

j+i

(nl,....nm.kW) ?0 ,

The z-transformedversion of (la) is
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m

(1.bl ~t(zl, ..oszm;YW) = i~l@t(zl, .” ”,zm;YW)ai[zi-l] +

E[$t(zlj .. O,zm; Y~) - $t(z~> Ojs”””szm; Yvw)lujqj [#_ -. . . . 1] +

j=l J

z.

5 E[’t(zls.”.3zm;Yw) - ‘t.(z~~ ‘j ~””’szm;yvw)]ojpji.[~- 1]+. ...
i=l j=l J

j#i
(j,i)#(v,w)

zwYm i
Nt(zl 9

—-1]..O}zm;Yvw) - ‘t(zl~”””~ov~”””~zm;yvw)‘Uvpvw[ z
v\-

OKlzilSl,lSi~m ; “Iyvwl~ 1. u 9

Case2: v=w, l~v~m

In this case we have
m

[2a) fit(nl,...,nm;kW) = i~lpt(nl,....nl.l,nm;km)uim)ui ‘b(ni) +

~Pt(nl,...,nj+l, nm;kW)ujqjujqj +
j=l

& ~p%(n,,...,nl)l,nj+l,j,nm;kvv)~jpji~b(ni)~b(ni)+
i=l j=l .

j+i

Pt(nl, m’ vv-l)uvpvv”b(nv) -
.,.,n “k

m m

pt(nl,....nm.kvv)[~ai + ~ujqjb(nj) +
i=l j=l

~ ~~jpjib(nj) +avpWb(nk)l
i=l j=l

j#i

The z-transformed version of (2a) is
i



(2.b) 6t(Zl,....Zm.yvv)= ~~t(zl>...>zm;yw)~i[zl]l] +
:!4?
i,m

i=l c,m
m

P-
ry

X[@t(z~, O..,zm;Yvv) - ‘t(z~$O-020j,.0-,zm;Y~~)lojqj[& - 11 +
j=l j

5 5 [~t(+. ● *Am;Yvv) - @t(zl, .,.,‘j ,.-@,zm;Y~~)lojPji[~ - 1] +
i=l j=l j

j+i

[@t(zl, . . ..fJYvv) - @t(zl)...,ovszm;Yvv)l~&vv[Yvv[llv-ll

O<lzilsl, lSi~m; IYVVI <1. u

which a trafficWe now proceed to characterize conditions under

process is Poisson distributed. This will later on aid us in showing

the non-Poisson character of certain non-exit arcs.

Theorem 4.7.5

Let JN = (M,o,o,p) specify a Jackson network. Then

a) every traffic process {AW(t)}t>O, 1 ~ V,W $ m, with PW > 0

is Poisson distributed

iff

b) Bv(t) and Avw(t) ar~ independent for every fixed t ? O.-

Proof

Set zi = 1, 1 S i 5 m, in (lb) and (2.b). In both cases the equa-

tions reduce to

(1) &t(yvw) = I@~(Yvw)- at@v;Yw) l~vTw[Ym-ll , lywl :1.

(~] Assume that Avw(t) is Poisson distributed. Then its param-
t

[
eter must be (see Theorem 4.2.1) E(AW(t)) = ovpW* Pr(Bv(x)=l)dx. Hence,

[2) $t(yW) = eE‘Avw(t))‘YW-l) .

(3) it(yvw) = @t(yW)uvpWpr(Bv(t)=l) [yW-ll .
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Substituting (2) and (3) in (1) yields

(4) @t(yW)uvpWPr(Bv( t)=l)[yW-l] = [@t(YW) - @t(Ov;YW)lovpvW[yW-ll

IYwl ~ 1.

Dividing both sides of (4) by ovpW[yW-l] for yvw#l gives us (recall

that crvpW > O)

(5) @t(yvw)Pr(Bv(t)=l) = @t(YW) - @t(Ov;Yvw) s

IYWI ‘1.

Equating coefficients on both sides of (5) results in the system

of equations

(6) Pr(~(t)=kvw)*Pr( Bv(t)=l)

k =0,1, ...
VW

The required independence

(7) Pr(AW(t)=kW).Pr(J3v(t)=l)

kW=O,l,. ,.

as ‘Bv(t)is a zero-one random

= Pr(AW(t)=kW) - pr(Qv(t)=O,AW(t)=kW)

now follows,since (6) is equivalent to

= Pr(AW(t)=kW,Bv(t)=l)

variable,

(~) Assume that Bv(t) and AW (t) are independent for every fixed

t?o. Then (1) may be rewritten as

(8) it (yW) = [@t (Yw) -Qt (Ovl ‘$t (Yvw) 1a#wIYvw-U ,

IYVWI ~ 1

which reduces to

(9) $(yvw) = @t(Yvw)[l-@t(ov)l~vPwtYw-ll s

IYVWI ~ 1 . .

But

(10) 1 - @t(Ov) = 1 - Pr(Qv(t)=O) = Pr(Qv(t)>O) = pr(Bv(t)=l)o

Hence,(9) becomes



(11) ~t(Yw) =

and (11) can be

random variable

Corollarv 4.7.4

213
C=
:?!
<7

@t(yW)Pr(Bv(t) =l)avpW[yw-ll
r’-
*
<<C
<#!

recognized as the z-transform of a Poisson distributed
*-
P’l-
,-
rr

with intensity Pr(Bv(t)=l)ovpW. c1 “

Under the conditions of Theorem 4.7.5, {AW(t)}t20 has fixed inten-

sity iff {Bv(t)}t>O is in equilibrium. Moreoverp in this c~e, the

intensity is d~pW, where for a recurrent node v d~ ~ E(Dv(t,t+l])

depends on the initial condition q(0) = qo. ❑ ’

I
Remark 4.7.2

Theorem 4.7.5 and Remark 4.7.2 remain true for each departure
m

process Di(t) ~ ZAij(t).
j=O

It can be shown that the proofs of Theorem 4.7.5 and Corollary~4.7.4

go through for the {Di(t)}t>o. This is so, because for each isM the

birth-and-death equations for {(Q(t);Di(t))}t20 constitute a combination

of Case 1 and Case 2. u

We are now prepared to point out a subclass of non-exit arcs on

which the traffic process is not Poisson in equilibrium.

Theorem 4.7.6

Let JN = (M,u,u,P) specify a Jackson network in equilibrium. Let

v be a node satisfying :

*Aa) 6V = E(Dv(t,t+l]) > 0.

b] t)<pvv<l.

Then {~v(t)lt>d iS not a Po.isson,process.

.
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pTOOf

8.

Set zi = 1, ieM-{v}, in equation (2.b) of Case 2. We obtain

(1) fj(zv;Yw) =

(Qtczv;yw)cxv+ iiot(zv;YJ - Ot(zv,oj;yvv)]ujpjv)[zv.l] +
j=l
j#v

I@t(zv;Yw) - Qt(Ov;yW)]av(l-p~) [#- 1] +
v

[Qt(ZV;YVV) - @t(ov;yvv)]avpw[yvv-l]

()<1+1
9 IYVVI <1.

Equating the free coefficients on both sides of (1) yields

(2) +pr(~(t) =O,AW(t)=O) =

-pr(Qv(t)=O,Avv(t)=O)av -

fi[pr(Qv(t)=O,~v( t)=O) - pr(Qv(t)=O,Qj(t)=03Avv(t)=O)]UjPjv +
j=l
j#v

Pr[Qv(t)=l,Avv(t)=O)ov(l-pvv),

t~o. ‘)

If we assume that AW(t) is Poisson distributed, its intensity
@

must be t$~pvv,by Corollary 4.7.4.

Moreover, by Theorem 4.7.5,Avv(t) is independent of Bv(t) for every 1.

fixed t ? O. Therefore,

-d*p t F
(3) Pr(Qv(t)=O,AW(t) =O) = Pr(Bv(t)=O,Avv(t)=O) = Pr(Bv(t)=O)e v vv

(4) +P~(Qv(t)=O,Avv(t)=O) = Pr(Bv(t)=O)e-6 ‘vvt(-6~pW):

since Pr(Bv(t)=O) is constant in t.

Next send t+O+ on both sides of (2).
B

By continuity in t of all functions in (2),we may set t = O on both
n’

sides of (2). In view of (4), the left-hand side (LHS) of (2) becomes

1

m
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(5) lim (LFISof (2)) = lim Pr(Bv(t)=O)e
.d;Pwt(-8;pw) =

t+o+ t.+o+

Pr(Bv(0)=O)(-d&vv) K O

because in equilibrium, Pr(Bv(t)=O) > 0, due to c) in Corollary 4.5.1.

The right-hand side (RHS) of (2) becomes

(6) lim (RHS of (2)) = -Pr(Qv(0)=O,~v(O)=O)av -
t+o+

~ [Pr(QJO)=O,Aw(0) =O) - pr(Qv(0)=O,Qj(O)=O,~v(O)=O)]ajpjv +
j=l
j #v

Pr(Qv(0)=l,Avv(O)=Ojov(l-pvv)=

-Pr(~(0)=O)av - Z [pr(Qv(0)=Ol - Pr(Qv(0)=O)OPr(Qj(O]=O]ajpjv+
j=l
j#v

pr(Qv(0)=l)~v(l=pvv) =

-Pr(Qv(0)=O)[uv + ~p~(Qj(0)>O)ajpjv] + pr[Qv(0)=l)ov(l-Pvv) =
j=l
j#v

-P~(Qv(0)=O)6;(l-pW) + Pr(Qv(0)=l)av(l-pvv).

In the calculation above we used the mutual

Ql (0) ,. ..,Qm(o),Avv(o) since Ql(o),. ..,Qm(0) are

in equilibrium and Pr(~(.0)=0) = 1.

We now proceed to argue that in equilibrium

(7) PT(QV(0)=l) = ~pr(Qv(0)=O)
v

independence of

mutually independent

To see this, observe that v is either completely open or recurrent.

If v is completely open,then (7) follows from Theorem 4.5.6 and

Theorem 4.5.1. Otherwise, v is in an irreducible set Rk. From Theorem

4.5.6 and Theorem 4.5.2 we see that for every t ~ O
X*

(8) P~(Qv(t)=ll#Rk=n) = > Pr(Qv(t)=Ol#Rk=n), n = 1, 2, ...
v“
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where fRk is the equilibrium total customers in Rk. Using (8) we deduce

(9) Pr(Qv(t)=l) = ~ pr(~(t)=lltRk=n)Pr(YRk=n)=

~ ~ pr(Qv(t)=0 lMRk=n)Pr(#Rk=n)=
,U

n=l V

t?o.

But the assumption 6* = E(D(t,t+l]) > 0

6*
XPr(Qv(t)=O,#Rk > 0),
‘v

implies that Pr(#Rk>O) = 1,

whence (7) follows. Substituting (7) into [6) yields

(10) lim (RHS of (2)) =
t+()+

-Pr(Qv(0)=O)~~(l-Pvv)+

in contradiction with (5).

We conclude that ~v(t)

*

pT(Qv(O=@- Uv(l-pvv) = o
v

cannot be Poisson distributed and hence is

not a Poisson process in equilibrium.

We are now in a position to make

❑

Remark 4.7.3

Under the conditions of Theorem 4.7.6,the departure process

{Dv(t)}t>O from node v cannot be Poisson distributed. Otherwise, the

Bernoulli switch would render {Avv(t)}t>O Poisson distributed, in con-

tradition with Theorem 4.7.6. •1

the method employed in Theorem 4.7.6

apply it to non-exit arcs which are not

We remark in passing that

breaks down when attempting to

feedback arcs. The reason for this phenomenon is that equation (la)

applies to exit arcs as well as non-exit arcs, so that the topological

properties of non-exit arcs are not captured by it. However, equa-

tion (2a) does oap-twrethe topological properties of feedback arcs



(which can neverbe exit arcs by definition),and the desired contradic-
:m
Cn
<n
.-

tion can be demonstrated. .y
w-
r’t-

iz
We now proceed to identify another subset of non-exit arcs on which

the equilibrium traffic process fails to be Poisson distributed.

Theorem 4.7.7

Let JN = (M,a,u,P) specify a Jackson network in equilibrium. Let

(v,w) be an arc such that iS~pW> Ilall where 6~~E(Dv(t,t+l]).

Then, the traffic process {AW(t)}t20’is not a Poisson process.

Proof

We already know from Theorem 4.7.1 that (Q(t);AW(t))t>O is a

Markov process. By Theorem C.2.1 in Appendix C, the birth and-death

equations of this process are equivalent to the integral equations
.

{
(1) Pt(v) = Po(v)e-cvt + ~Px(~)cPrVve-cv( t-x)dx,

OP

V= (nl,....~.kW) ?O,

where B ranges over the state

From (1) we conclude

(2) Pt(v) ? P.(v]e-cvt,

space of {(Q(t);AW(t))}t>O.

Next, set V. ~ (O1,....Om;Ovw) in (2). Observe

cVo= ~ai= IIal1; also Po[vo) ~ K >0, because
i=l

that

1P. Vo)
‘A-
= Pr(Q(0) = VO) = f,(l-Pi) ~ K. Hence,

-Ilallt >i~l(3) pt(vo) ~ K-e 9 t?()

or equivalently

[4) pT(Q(t)=O;Avw(t)~O)~K.e-Ilallt $ t~oi

Now, assume that ~(t) is Poisson distributed in equilibrium.
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In view of Corollary 4.7.4, we have in particular
@

(5) Pr(AW(t)=O) = e-dtpwt ‘>O , t?o. .,.

Dividing both sides of (4) by (5) yields g

-1Iallt+~;Pwt =(6) Py(Q(t)=OlAw(t)=O) ~ K “e
@

K$e(fi;r) w-l] all)t.m
t+

since we assumed d~pw - Itall > 0.

This is a contradiction, since (6) must be bounded by 1. We con-

clude that {Aw(t)}t>O cannot be Poisson distributed,and thus is not a

Poisson process in equilibrium. •1

An identical argument shows that any departure process {Dv(t))t20

or arrival process {Av(t)}t>O,with d: > Ilall, cannot be Poisson dis-

tributed in equilibrium. u

We now demonstrate by an example that the class of arcs satisfying

Theorem 4.7.7 and Remark 4.7.4 is not a trivial one.

Example 4.7.1

Consider the Jackson network in Figure 4.7.1. We have that

IIalI = al and the traffic equation is

The traffic solution is

al
Clearly,til= —> al = Ilull whenever o < ql < 1.

q~

.

E
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A12(t)

T“ql

Figure 4.7.1’: A Jackson Network with Arcs Satisfying
Theorem 4.7.7 and Remark 4.7.4.
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Thusjby Remark 4.7.4, {Dl(t)} is not a Poisson process in equili-

brium nor is the arrival process {Al(t)}t>O, where Al(t)~ A~x(t)+ A21(t).

Furthermore, if p12 > ql, then by Theorem 4.7.7,neither {A12(t)}t>0 nor

{A21(t)}t>0 canbe a Poisson process in equilibrium.

Indeed, all the above are non-exit arcs. The only exit arcs are

the inlet arc (0,1) and the outlet arc (1,0), on which the traffic

processes are Poisson in equilibrium, due to Corollary 4.7.3. ❑

We note in passing that an exit arc (i,j) never satisfies

8iPij > Ilall” It suffices to show this for outlets of the network

since every exit arc is an outlet of some partial network. But this

follows immediately from

(see Theorem 4.4.4),

As a closing remark

4.7.7 can be extended to

Conjecture 4.7.2.

m
the identity ~ai

i=l

we conjecture that Theorem 4.7.6 and Theorem

arbitrary Jackson networks in accordance with

B

B
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SIMPLIFICATIONS OF JACKSON QUEUING NETWORKS K%

5.0 Introduction

Simplifications of queuing networks fall within the scope of the

general conceptual framework outlined in Appendix B.

able

As a

Simplifications of queuing networks are motivated by the consider-

analytical complexity frequently encountered by the investigator.

matter of fact, in trying to extract stochastic properties of

I

queuing networks, one often finds the problem to be analytically intrac-

table. Consequently, it becomes necessary to resort to computer simu-

lation. However, the computer complexity of such simulations (i.e.

the requisite computer resources) could often render a simulation pro-

hibitively costly or even impossible.

Thus, conditions for simplifications that reduce the conceptual

complexity, simulation complexity, etc. are of interest at both the

theoretical and applied level.

The organization of this chapter is as follows.

Sections 5,1 - S.3 investigate three classes of simplifications

that take Jackson networks into Jackson networks (recall that all the

networks alluded to are always assumed to have single server nodes).
,

These are the so-called F.simpZ<f<cat<oh~ [which remove feedback arcs

from nodes), A-s~Zifieations (which remove all arcs among a subset

of nodes), and L-simp7ifiea_tions (which lump a subset of nodes into a

single node).

Section 5.4 discusses simulation complexities of Jackson networks.

TWO types of such complexities are treated: time complexities and

221
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space complexities. Finally, we compare the effect on such complexi-

1

ties under the three classes of simplifications above.

The reader is referred to Appendix B for a description of the I

underlying framework and

5.1 F-Simplifications

An

Jackson

subject

1, p~j

for further orientation.

1

I

(feedback simplification) of anode i takes a

network JN = (M,a,~,P) into a Jackson network JN’ = (M,a’,o’,P’), 1

to

= pkj for any kd.!-{i]and O S j 5 m.

(
o, ifi=j

2) Ifp.. z 1, then P~j =
11

,1
+,ifi+j.
- ii

3) Ifpii = 1, then p~j = pij , OSjfm.

In other words, F-simplifications eliminate feedback arcs in Jackson

networks (see Figure 5.1.1), excluding the trivial case pii = 1.

It will be shown that certain F-simplifications preserve the dis-

tributions of the state and traffic processes. To do this we use

measure preserving point morphisms (see Ch. 3) in coordinate probability

space (see Ch. 2). We are justified in taking a coordinate space

representation because the probabilistic structure in terms of distribu-

tions doesnot depend on the sample space representation.

The fact that enables us to use system-theoreticmodels for coordi-

nate sample points is contained in
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Lemma 5.1.1

Let S =< fl,A,P) be the coordinate probability space of Example

2.5.3 corresponding to a Jackson network. Let N(u) be the state-DEVN
1

associated with a coordinate sample point udl, Then, for almost every
..

ue!J,the state-DEVS ~(ul of Example 2.5.3 is regular.+

...

Proof

The underlying stochastic processes of a Jackson network are
9

finitely many and mutually independent Poisson processes. The Lemma

follows (see [Dl] p. 401) because each of these processes is conserva- 8

tive (has almost surely finite number of jumps in every finite interval).

❑

We start with a F-simplification of a M/M/l queue with feedback.
B

Consider the F-simplification in Figure 5.1.2. This F-simpli-

fication takes the M/M/l queue with feedback and maps it into aM/M/l 8

queue. The arrival parameter is unchanged but the new service parameter

iis 0’ = qu, where a is the old service parameter and q is the proba-

bility of leaving the system. The quantity p is the feedback probabil-
,1

ity and it assumed that p + q . 1.

Consider the coordinate probability space S = {fl,A,PYo~Example I

2.5.2 for the base queue, and the coordinate probability space

St = <n!,A!,P> of Example 2.s.1 for the l~ped queue, both in Figure 5.1.2.
u

Let us define a map I-1:~~tll as follows:
I

Let 1A= (flo,~ajlj~l, ~sj}j~l>~vj}j~l)~~)

and define a sequence of random variables {Z.} m almost everywhere on
3 j=O

Q by

J.

‘See Definition 1.2.7.

B

i
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o, ifj=O”

(A) Zj(u) ~ min{k: k > Zj-l(~) andvk(u)=o}, if the minimum exists

undefined, otherwise

Z is the index of the j-th zero in {V.}.: , i.e. in an infinite
j J J-1 1

sequence of Bernoulli trials,

@

Now, define H(u) = u’cO’ such that

Zj(W)
(B) 1A)’ .: } where s; =~ (R~*{aj}j~~~{s~}j-l

F

Si .

‘=zj-l
ol)+l

On the null set of O for which {Z.}.: is undefined, we define H arbi-
] J-O

trarily. I

B
above is a measure preserving point morphism (m.p.p.m.). I

B

Theorem 5.1.1

The map H

Proof

We show that the sufficient conditions of Theorem 3.1.1 in Chap-
1

ter 3 are satisfied for H.

H is clearly subjective (but not injective) because for every 1

U’C$I’there is at least one ucflsuch that {s!}.: has the represen-

2 (w)
J J-1

%

,1
tation s’.= s. .

J 1i=z.
J-1

W)+l

Let Y’ ~ {L;,A;,sj: j=l,2,...} be the obvious projection functions E

on the coordinates of u’cfl’ (see Ch. 2, Sec. 2.4). Then Y’ generates
1

A’ in S’ by definition ofS’ (see Ch. 2, Sec. 2.2),and condition a) of”

Theorem 3.1.1 is satisfied. Likewise, let G ~ {LO,Aj,Sj,Vj: j=l,2,...} i

be the generator set of!S (see Definition 2.4.1).

B



By definition of the sequence {Z.}.: the Z.-Z.
r-

j J-o’ J j-l
are mutually ;m

<m
c-n

independent, identically and geometrically

parameter q.

Define a sequence of random variables

distributed with common P-
ry
$--
rr
c%

{Sj};=l over S by

Zj (U)

Sj(u) 4 ~ Si(Lo) almost surely.
i=Zj;l(u)+l

Then the ~j are mutually independent and identically distributed with a

common Laplace-Stieltjes (LS) transform f(c). Moreover, if we let

g(c) ~+ be the common LS transform of the service times {S.}.: weJ j-l’

can write

(1) f(c) = W(c) + qPg2(c) + qP2&’3(~)+ ... =

Consequently, each ~. is exponentially distributed with parameter qo.
J

It follows that Y~{LO,Aj,Sj: l,2,...}and Y’~{L~,A~,S~:j=l,,2...}

are distribution equivalent since the one-dimensional distribution func-

tions are identical,and both sets consist of mutually independent random

variables. Thus Condition b) in Theorem 3.1.1 is satisfied.

To verify that condition c) of this theorem

~ (2) LO(U) = LO = L&(H(u)) almost surely

(3) Aj(w) = aj = A;(H(u)) almost surely

and finally from (B)

Zj(u)
\- *

also holds we note that

(4) ~j(w) = ~ , Si = s; = Sj(H(u)) almost surely.
i=Zj_~(w)+l

We conclude from Theorem 3.1.1 that H is a m.p.p.m. as required.

•1
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A few comments regarding the simplification aspects of H are

warranted at this point.

In the terminology and the conceptual framework of Chapter 3

(Sec. 3.2), s~s’ is a stochastic point simplification, since Hwas

shown to be a m.p.p.m. The lumping effect of H at the sample space

level is evident. The map H eliminates the last component of u by

lumping the service sequence {s.}.:
J ]-1

and the switching sequence {v.}.:J j-l

into the new service sequence {s’}j j~l as given in (B). The matching

operator H of Definition 3.3.1 sends the set Y’ to the set Y in Theorem

.5.1.1. The essence of H is captured by the observation that the service

times {~.}.~ and {S!} M
J j-l are identically distributed, because the totalJ j=l

service time awarded between departures in the base queue is distributed

as a single service time in its lumped version. We also have the fol-

lowing relation at the sample point level.

Theorem S.1.2

Let M(u) be the state-DEVS associated with uco in D) of Example

2.5.2,and let M(H(u)) be the state-DEVS associated with H(IJ)E.Q’in

1).1)of Example 2.5.1. Then for almost every wE~, M(&fM(H(w))tvia a

TC-DEVS state-homomorphism (i,L,i’l).tt

Proof

Let ube such that M(u) and M(H(w)) are regular and ~Zj(~)}j~l is

well-defined. FOT such fixed u, denote Zj(u) ~ zj, j = 1,2,..;

For any S = (L,n$vn$r)cSui there is a (unique) j=j(n), such that

K n S z..
‘j-1 Taking ~,,,is ~, we definell:~w~S H(u)

by
J

t~istfie transitional

ftsee Definition 1.4.4.
covering relation (see Definition 1.4.2).



229

.-.s!
<-.

(~, j, m), ifL=O

(1) m (!L,n,vn,r)~
‘j

(~, j,r+~Si), ifL>O
i=n+l

A
where j = j(n).

Note that in s = (k,n,vn,r)eSu, E represents line size, n the current

customer, Vn the current switch position, and r the residual current

service time. The interpretation of components in s’ s (k’,n’,r’)~s~(u)

is analogous.

Note that the map% is

unique representation

‘j
(2) x’ =r+~si for

i=n+l

Next, define for any s

subjective because

some n satisfying

every O ~ r’ s,s! has a
J

z, <n~z..
3-1 J

I‘j -n,if!?>O

A
where j = j(n). It follows that

w, iffi = t) L(s)

= X +U(5U ~(s,i)).(3) *H(U) (%(s)) =
‘j i=O 9

r+ ~s., ifR>O1
i=n+l

Also, for s ~ (2,n,vn,r)cSuwith k > 0, and denoting j ~ j(n),

(4) fi(~w,$(s,L[s)+l))= ?r(~w,$(s,zj-n+l)) =

Ili[O,zj+l,vz.+l,~), if k = 1
3 =

‘i(l-l,zj+l,vzj+l,s~j+l),if 2 > 1

I(O,j+l,@), if~ = O

(t-l,j+l,s~+l),ift > 0
= 6H(w),$

(IS(s)).
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Finally, for any ~c~u and O S
T < ‘H(u)

(Ii(;)),represent
I

:= (L,n-k,vn-k,~)and . .; + ~, si-d, provided j(n-k) =j(n) ~j.
i=n-k+l

ALet (s,e) = 6G((~,0),$T) where 6G is the transition function of G(M(u)) 1

(see Lemma 1.4.1); hence s = (k,n,vn,r) and e = r-d. Then, ~
1

IIl(l,n,vn,sn),where n = z. +1, if i = O
(5) ?r(d~,N((s,e),l)) = ]-1

=
Il(g+l,n,vn,r-e), if R ~ O

1
(ljj,

‘j
3= ‘i) , ifl=O

‘= j-l+l ~ =
.

(k+l,j,r- e+ 2 ‘i) , if!l, >()
i=n+l

1
(l,j,s;) , ifl.=0

z’ =

(k+l, j, d + 2 ‘i) 3 if!?,>O
i=n+l

6~~u),M(((~,j,m),~),l), iffl = O

)
= 6H(U),M

((%(:),T),l).

6
H(@,M(((8’j,$ +

‘j

F
‘i)~~)~l),if 2 > 0

i=n- +1

From (3), (4) and (5) we conclude (see Definition 1.4.2) that

1
M(u)aM(H(u)), and this is true almost surely due to Lemma 5.1.1 and

by definition of {Z.}.:
J j-o”

Comment 5.1.1

tl

In particular STRAJq ,n3STRAJ via [i,h) where
Uol ‘H(u),qH(u)

I
h(s,e) ~ (h(s),h2(s,e)),by Conclusion 1.4.2. To see this we note that

QQ
nw = ‘H(w) @ la.. s

j=l J

i(!to,l,vl,~), if!?,=O
Furthermore, qw = (s.,O) where SO = , B

(Lo,l,vl,sl), if L > 0

1

B
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{

($O,l,@), ifk = O

ad ‘H(w)
= (s;,0) where s; =

(kO,l,s~), if~ > 0..

Finally, h(qw) = qH(u), because = s; andh2(s0,0) = O. •1

Having established the fact that H is a m.p.p.m. such that

M(u)~M(H(u)) almost surely, the next step is to check the scope of

preservation of behavioral frames under the point simplificationS&S’.

Theorem 3.2.1 is used as a sufficiency criterion for preservation

in the sense of distribution equivalence, in the following theorems.

Theorem 5.1.3

Suppose an L-simplification of an M/M/l queue with feedback

JN = ({l},a,o,p)yielded aM/M/l queue JN’ = ({l},a,oq,O)where q = 1 -p

(see ~igure 5.1.2). Then the L-simplificationJN ~JN’ preserves the

state process, provided the initial states are distribution equivalent.

Proof

L- ~Qt}t20 and {Q:+. be the state processesin the base queue and

lumped queue,respectively, of Figure 5.1.2,

For uefl such that M(m) and M(H(u)) are regular and {Z.}.m is well-J J=O

defined,let OTRAJ
qu,nw

and OTRAJ be the “line size”
‘H(m),nH(u)

output

trajectories of STRAJ
qu,nw

respectively. That isand STRAJqH[ti),~H(u)

(1) OTRAJq ~ (t) = A(STRAJq ~ (t)) = A((L,n,vn,r),e) ~ k
u, W m, u

(t) = a’(STRAJ (t))= N((L’,n’,r’je’)~ 2’.
‘H(w),nH(u)

(2) OTWqH(~),n~~(~)

Now, for any t 2 0

Cn

r-
:Wa

<m

<,67

l.-
W

.-

rr

m

. .



232

(3) Qt(u) = OTRAJq ~ (t) and Q;(H(m)) = OTRAJ
‘H(@,qH(u)

(t).
a, u

Since STRAJ~ ~ aSTRAJ
‘H(w),nH(m)

via (i,h) by Comment 5.1.1, it
U, W

follows that in particular

(4) h(STRAJq ~(t)) = STRAJ
‘H(u),nH(@

(t) , t?o
IJl,w

where h = (hl,h2) = (?i,h2)andll is defined in (1) of Theorem 5.1.2.

But by (1) in Theorem 5.1.2

(5) t(k,n,vn,r) = (L’,n’,r’)~ R = 1’

whence by (1) and (2)

(6) OTRAJq ~ (t) = OTRAJ (t) , t?o.
u, Ld ‘H(u),nH(@

From Lemma 5.1.1 andby definition of {Z.}.m we conclude that for
j J=()

almost every WCO

(7) Qt(u) = Q;(H(u)) almost surely

whence by Theorem 3.2.1,{Qt}t>0 and {Q~}t20 are distribution equivalent,

❑

Corollary 5.1.1

The busy and idle period processes are also preserved under the

F-simplification of Theorem 5.1.3. cl

Theorem 5.1.4

The departure process is preserved under the F-simplification of

Theorem 5.1.3, provided the initial states are distribution equivalent.

Proof

Let {I)t}t>oand {D~}t>O be the departure counting processes in the

base queue and in the lumped queue,respectively,of Figure 5.1.2. For

tiE$lbe such that M(w) and M(H(u)) are regular and {Z.}.: is well-
J J-()
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defined, let OTRAJ and OTRAJ be the “departure count” :*
q*,no ‘H(m),VH(U)

66
{m
.-.

output trajectories

That is,

(1) OTRAJq ~ (t)
U, w

where j = j(n) satisfies

of STRAJ and STRAJ
FY

qu,rlu
‘H(u),qH(u)

respectively. .-
n-
C:%

= A(STRAJ
qu,Tljt))

= A((R,n,vn,r),e) ~ j-1

(t)(2) OTMJqH(w),nH(u) ~

X’((!t’,nl,r’),el)=

zj-l(u) < n S zj(~)j and

(t)) =. A(STRAJqH{w),qH(u)

n’-l.

Now, for any t Z O

(3) Dt(@ = OTRAJq ~ (,t) and D;(H(u)) = OTRAJ (t).
(II,u ‘H(u),nH(u)

By Comment 5.1.1,it follows that in particular

(4) h(STRAJq ~ (t)) = STRAJ (t) ,
‘H(u),nH(u)

t?o
u, u

where h = (hl,h2) = (ll,h2)andfiis defined in (1) of Theorem 5.1.2.

But by (1) in Theorem 5.1.2

(5) ~(~,n,vn,r) = (~’,n’,r’)~n! s j(n) ~ j

where Zj-l(w) < n S ‘j(o) .

Hence, by (1) and (2)

(6) OTRAJq ~ (t) = OTRAJ

‘H(o),nH(u)
(t) , t?o

u, u

From Lemma 5.1.1 andby definition of {Z.}.: we conclude that for
J J-(I

almost every UCS2

(7) Dt(w) = D~(H(u)) , t?(l

whence by Theorem 3.2.1, {Dt}t>o and {D~}t>o are distribution equivalent.

•1

Theorems 5.1.3, 5.1.4 and Corollary S.1.1 agree with related results
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in [Dal] where F-simplifications of a large class of single queues with

feedback are investigated. It is possible, however, to extend these

results in a different direction, namely to arbitrarily connected Jackson

networks with single server nodes.

Theorem 5.1.5

Let JN = (M,a,o,P)be any Jackson network with single server nodes.

Suppose an F-simplification is performed only on each node ieM with

o < pii K l,such that

satisfies (see Figure

a) 0; = Oi(l-pii) ,

the resulting lumped network JN’ = (M,a,o’,P’)

5.1.1):

1 ~ i Sm.

I
Pij

if i # j, 1 ~ i ~rn, OS j ~m

b) p!. = l-pii ‘lJ
O ,ifi=j, l~i<m.

Then, the state process and each traffic process on a non-feedback

arc are preserved, provided the initial states are distribution equiva-

lent.

Proof

Since the proof is analogous to the one for the F-simplification

of Theorem 5.1.3 (see Figure 5.1.2), only an outline will be given.

Consider part D) of Example 2.5.3. As usual, S =<s2,A,P> and

S’ = <~’,~’,P’> denote the coordinate probability space of the base

network and the lumped network of this theorem. First, we define a

m.p.p.m. H:Q ~ sltas follows. Let

(1) k)= (k. i, {ai,j}j~l, {Si,j}j:l, ‘vi,j}j~~: i.=1,2, . . ..nOM

>



235

c=
Za
m

Fox every i = 1,2,...m, define a sequence {Z. .} W of random variables by
r-

.:-
l,J j=l 6*

O,ifj=O
w?
,-

(2) Zi j min{k: k>Zi j ~
VT

(w) andvi,k(u) #i}, if the minimum exists. :;J 9- C%
undefined, otherwise

Note that the Z. - Z.
llj ljj-l

are mutually independent, and for every

fixed i=l,2,...,m they are identically and geometrically distributed with

common parameter 1 - pii. This is so, because Z. is the index of the
ljj

j-th non-feedback switching decision at node i, where the sequence of

switching decisions constitutes an infinite sequence of multinominal

Bernoulli trials. Now, the sequences {Zi j(w)}j:l are almost surely
Y

simultaneously defined.

For such LOCO,define H(u) = w’ where

where for any j = 1,2,...

z i,j(u)
(4) s; j =

z
s. and V! = v.

> l,n l,j 1 J““)
l,Z. . .

n=Zi,j-~(u)+l”
>

On the null set of~ for which the {Z. .}.m are undefined, H is defined1,] J=l

arbitrarily. Thus, H is subjective because every sequence {s! .}.W and
lJJ J=l,

{v! .]m has at least one representation as in (4).
~sJ j=l

Let Y’ ~ {L~ ~,A. S. V. :iSi ‘m> j = 1,2 ,...} be the obvi-
> ljj’ l,j’ ljj

ous projection functions on 0’. Then Y’ generates A’ in SI (condition a)

of Theorem 3.1.1).

Finally, let G ~ {Li ~,A. S. V.
9 l)j’ ljj’ l)j

:lSi SIIl,j= 1,2,...}be

the generator set of S,and define a set of random variables

Y ~ {Li ~,A. ~. ~. : l~i~m, j =1,2, ...} over Swhere
> l,j’ ljj’ ljj

z.

(5) Si j ~ ~ Sn and ~. !Viz ‘
l,j

almost surely .
> i?=z. +1

J-1 ‘ igj
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A calculation similar to (1) of Theorem 5.1.1 reveals that each pair

s. and S! has the same exponential distribution with parameter
l>j ljj

Ui(l-pii). Moreover, each pair ~. and V! has the same distribution,
~}j l}j

as for every fixed 1 S i S m, both ~. and V! correspond to a multi-
lyj ljj

nomial Bernoulli trial that assumes values in the set {n: nsM-{iJ}

with probabilities

(6) Pr(~i j=n) = Pr(V~ j=n) = pin = ~
J 9 ii

We can now conclude that Y and Y’ are distribution equivalent

(condition) of Theorem 3.1.1), because they consist of mutually

independent random variables. Finally, condition c) of Theorem 3.1.1

is verifiable as in Theorem 5.1.1.

This establishes the fact that H is a m.p.p.m. from S to St

according to Theorem 3.1.1.

Next, we expand each N(w) into M
N(w)

and each N(H(u)) into M
N (H(M))

(see Ch. 1, Sec. 1.1),and compare the state trajectory representations

of w and H(u) at the DEMS level. It again follows that for almost every

tom, ‘m)) and‘N(H(w)) are regular state-DEVSs.

To’verify that the state and traffic processes are preserved we

merely make the following observations.

First, it can be shown that for each a, 1 S a

Mu(w) 3Mu(H(f.11))almost surely, as in Theroem 5.1.2.

<m, we have

Thus, departures from

each component Mu(w) are concurrent with those of Ma(H(w)) almost surely.

Furthermore, the stitchings in Md(H(w)) were set up so that departures

along each non-feedback arc are also concurrent, almost surely.

Consequently, ~(w)3~(H(~)) ‘n such a way that line sizes and

traffic along each non-feedback arc are identical for almost every

UEQ, because the initial line sizes are identical.
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C=

:2
<7

This co~letes the outline of proof for this theorem. u!
r-
l-l?
P-

We remark that Theorem S.1,5 can be verified directly by writing
rr
R%

the birth-and-death equations of the state process augmented by any sub-

set of traffic processes, and observing that the same equations ensue.

However, the merit of stochastic simplificationsvia measure pre-

serving point morphisms is twofold. First, it provides considerable

intuition and insight into simplificationsbecause it enables the user

to employ system-theoretic tools and principles which are inherent in

queuing systems. Second, Theorems 3.1.1 and 3.2.1 (which provide the

basis for stochastic point simplifications) are rather general and are

not restricted a priori to a certain class of stochastic processes.

It should also be pointed out

may test its scope of preservation

Theorem 3.2.1. Furthermore, using

that once a m.p.p.m. is found, one

via the sufficiency conditions of

system-theoretic tools,these condi-

tions can be readily tested by comparing queuing histories and observing

the behavioral frame of interest. In our case, we saw that the existence

of H allowed us to conclude that behavioral frames such as line sizes,

traffic process, busy and idle periods etc., which require no informa-

tion concerning customer identity, are all preserved.

It is natural to ask whether customer-orientedbehavioral frames

such as waiting times and transit times are also preserved. First, we

point out that such behavioral frames cannot be defined on representa-

tions of sample points w which are derived from the associated DEVS

M (u). The reason is that the M(u) model does not contain information

regarding individual customers, because the g components of its

sequential states retain line size rather than line configuration
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ii(u)

TM-DEVS TC-DEVS

state-homomorphism state-homomorphism

M(u) fi(H(w))

TC-DEVS TM-DEVS

state-homomorphism state-homomorphism

M (H(u))

b

Figure 5.1.3: System-Theoretic Relations Engendered by the
F-Simplifications of Figures 5.1.1 and 5.1.2.
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m

(see Examples 2..5.1- 2.S.3).
r-

Consequently, a more elaborate model
:mm

<.*

cm

M(w) has to be associated with every w, whereby the L component is re-
.-.
~T

;;
placed by a c component where c is an ordered string of customer tags c%

which describes the line configuration (see Examples 1.1.1 and 1.1.2).

On comparing fi(w)with fl(H(u))and the state trajectories that

they engender under the F-simplification of Theorem 5.1.3, one observes

that condition a) of Theorem 3.2.1 cannot be verified for waiting and

transit times. This stands in agreement with the facts found in [Dal].

There is no reason to believe that customer-orientedbehavioral frames

are preserved in the F-simplification of Theorem 5.1.5 either.

“We conclude this section with some system-theoretic remarks.
,-

The DEVSS M(u)and fi(H(u))are more complex and contain more in-

formation than M(u) and M(H(w)) respectively. This explains why cus-

tomer-orientedbehavioral frames are relatively difficult to derive.

It can be shown that there is a TM-DEVS state-morphism (g;li)from ~(u)

to M(u) such that ~ = S (see Definition 1.5.2). The effect of the mapfi

on the sequential states of M(w) is to lump the c-component into a

~-component such that IcI = R where IcI is the length of the string c.

Figure 5.1.3 summarizes the system-theoreticproperties of H and

the relations among the DEVS models associated with coordinate sample

points engendered by the F-simplification of Theorems 5.1.3 and 5.1.5,
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5.2 A-Simplifications
B

In the rest of the chapter we shall adopt the following notation.

Let JN = (M,Q,u,P)be a Jackson network with single server nodes.
1

As usual we write piO ‘l-~pij~qi and poi~~. Il”llisthe
j=l 11~11

norm of (A) in Sec. 4.3,while l-l is used as the cardinality symbol.

For any i,jsM and C,DCMU{O} we write p(i,C) ~ Kpij and I
jEC

p(C,i) 4 Xp.. for the switching probabilities from i to C and from C
jcc J1 !

to i, respectively. We shall also use the notation d(i,j) ! d.p..
1 lJ

for the expected equilibrium traffic rate on arc (i,j). Likewise, we 9

shall use 6(i,C) ~ ~d(i, j), 8(C,i) A ~d(j,i) and
jCC jSC

6(C,D) ~ ~ Ed (i,j) for the expected equilibrium traffic rates from
isC jcD

i to C, from C to i, and from C to D, respectively.

Finally, complements of C CM will always mean complements of
D

MU{O}, i.e. ~ ~ (MU{O})-C. We shall often deal with partitions

Ir= {CL}LCL of the node set M, in which case the CL will be referred u

to as blocks of the partition ~.
m

A A-stmpZificatZon (arc simplification) of a Jackson network

operates on a subset of nodes C, to the effect of removing all arcs
I

among all nodes in C (see Figure 5.2.1). Formally,it takes

JN = (M,a,rJ,P)into JN’ = a(M,a’,cT’,P’)such that

1) p!.=p.. foranyifCand OSjSm.
lJ l-j

!
2) p!.=o

lJ for any icC and jsC .

In this section, we shall be interested in A-simplifications that
D

preserve distributions of equilibrium line sizes and the total service

time obtained by a customer in a subset of nodes C. I

B
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Let JN = (M,a,a,P)be an open Jackson network. Let Cc M satisfy

p(k,~) > 0 for all kcC. Suppose an A-simplification was performed on

C (see Figure 5.2.1), yielding a Jackson network JN’ = (M,a,u’,P’)where

a) for any i,jeM
.

I

a.>1
if i#C

(aol) o! ~
1 uip(i,~) , if icC

P“”>lJ
if iy!C

o, if icC and jcC

P“ “1]
if icC and jiC

p(i,E) ‘

Then, the A-simplification above gives rise to a new traffic solu-

tion d’ satisfying

idi’
if i#C

(b) 6! =

I
> VicM

1
d(~,i), if icC

and

(c) p! = Pi , ViEM

iff

(d) d(~,k) = dkp(k,~) , VkcC .

Proof

(~) Suppose that (b) and (c) hold.

From (al) and (b), it follows that

Applying (1) to (c) gives us

6k
(2) — = ‘(c’k~ , vkEc

‘k ~kp(k,c)



:=
\ r?

r-

whence (d) immediately follows.
:-
<P,
cm

(~) Suppose that (d) holds.
,-
rT,
v-
m“

We show first that 61 as given by (b) satisfies the traffic equa-
C%

tion

(3)

(4)

of JN’. Taking note of (a.2) and (d) we have:

for icC,

q =C2i + fi6!p’..=~.+~&p.. - “
j=l jjll j~C J J1 = 6(CY1) .

For i#C,

~! =(X.+ D!p!. + Zd!p!. = a. + ,~cdjpji + ~6(C,j)p[~~~) =1 1
jj?CJ ‘1 jEC JJ1l.

j&c

C4i+ ~6jpji + ~djp(j,~) ‘j: = ai + ~djpji = di”.
j$C jcC p(j,c) j=l

Since the traffic solution is unique for an open Jackson network,

we conclude from (3) and (4) that Equation (b) is perforce the traffic

solution of JN’. Finally, using (al), (b)and (d)gives us for every ieM,

.

(5)

iiC

9 if ieC

di

7’ if i#C
1 di

= =—= Pi
dip(i,~) 0.1

‘ip(i,C)
, if icC

as required. u

Corollary 5.2.1

If the A-simplification JN ~JN’ of Theorem 5.2.1 satisfies con-

dition (d), then JN has a state equilibrium iff JN’ does. Moreover, in
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this case the equilibrium state distributions are identical. ❑

Condition (d) of Theo~em 5.2.3 can be equivalently stated in terms

of node parameters in C only as follows.

Lemma 5.2.1

The condition

(a) ~(~,k) = dkp(k,~) , ilkEC

is equivalent to the condition

(b) 6(C,k) = 6kP(k,C) >

Proof

By definition we can

(1) ‘k = 6(C,k) + d(~,k)

(2) 1 = p(k,C) + p(k,~) .

Hence, for every kEC

VkcC .

decompose for every kcC

(3) ~k = ‘k[P(k>C) + p(k,~ll= $@@ + $@@).

From (1) and (3) we conclude that (a) holds iff (b) holds. c1

The equivalent conditions (a) and (b) of Lemma 5.2.1 are conserva- 1

tion equations which assert that in equilibrium, the expected traffic

D
rates through the nodes of C are balanced with respect to C. In other

words, condition (a) requires that in equilibrium, the expected traffic
I

rate into each node k& from the nodes outstde C (including the exogenous

input) equals the expected traffic rate from keC to the nodes outside C. I

Likewise,condition (b) requires that,in equilibrium,the expected traffi-

rate into each node kEC from the nodes tnside C equals the expected

I



D

r-
:RC

traffic rate from kcC to the nodes inside C.
<6

This is a stronger <m
.-
FV

balance condition as compared to the balance condition postulated by the f;
c%

traffic equation,whereby the expected traffic rate into a node equals

the expected traffic rate out of it, in equilibrium.

Theorem 5.2.1 also enables us to make the following extension.

Theorem 5.2.2

Let JN = (M,a,o,P)be an open Jackson network. Let II= {CL}RCL

be a partition ofM, such that

(a) p(k,~k) > 0 , whenever ksCR

Suppose the A-simplification of Theorem 5.2.1 was performed on each c~sl’l.

Then,the A-simplification above gives rise to a new traffic solu-

tion 6’ where

(b) 6~ = d(~k,k) , whenever ksCg

and

(c) P; = 13i , Vi~M,

iff

(d) @2,k) = dkp(k,~g) , whenever keC
R“

)

Proof

(-~) Necessity is proven exactly as in Theorem 5.2.1, as every

kEM is in some C2EII.

(-) The A-simplification of this theorem can be obtainedby suc-

cessive

JN(0) =

It

network

A-sinqjlificationsof the Cl (simplificationprocedure)as follows:

JN ~JN(l)~ ... ~JN(lLl) .JNI.

follows from Theorem 5.2.1 that at each stage we obtain a Jackson

(n)JN(n) whose traffic solution 6 satisfies for every ishl,

‘1
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‘&(n-l) if iECL

(1) djn) = {i ‘

~ [n-l)
k (Cg,i) if icCL .

It is easy to see by induction that

dition (b) follows. Condition (c) holds

on setting n = ~LI in (l),con-

,because the P parameters
B

remain unchanged at each simplification stage
~N(n-l) ~JN(n) due

9

to Theorem 5.2.1. ❑

i

Since the preservation effect of the last theorem depends”on condi-

tion (d) of Theorem 5.2.2 (which is derived from the base network speci-

fication), we now proceed to give a set of structural conditions that
9

imply the behavioral condition (d) above.

‘1

Let JN = (M,a,rJ,P)be an open Jackson network. Let II= {Ck}R~L

be a partition ofM, such that for each !LcL,
!

(a) p(cl,k) = p(k,CL) , VkcCR.

(b) p(cfl,k)= const., VkcCn, Vcndl .

(c) Qk = const. , VkcC .

Then, for each LEL,

(d) ti(~~,k)= 6kp(k,~L), VkECL.

Proof

We show first that conditions (b) and (c) imply that for each !LcL,

(1) ~k = const. , VkcCE.

By Corollary 4.4.2

(2) 8 = a ~pn .

n=0
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Now, the set

(3) K(II) Q {v = (Vl ,.. .,vm) E lRm: for each LEL, Vk = const., VkcCL}

is a linear subspace of lRm. It can be directly verified that K(H) is

invariant under linear transformationswhose matrix representation is a

mxm matrix satisfying condition 0).

Hence, since CXEK(H),it follows that

(4) aPncK(ll), n = 0,1,...

and from (2) we conclude that (1) holds, as K(n) is complete.

Now, condition (a) can be written for each

(5) z Pjk = ~ Pkj > VkcCE .
jsCk jcCg

In view of (5), Equation (1) allows us to write

But Equation (6) is by definition for each IcL,

(7) Ncl,k) = ~kp(k,ck) , VkECk

and (7) is equivalent to condition (d) by Lemma

Finally, we observe

Corollary S.2.2

Let II= {C8}AEL be a partition of the node

network JN=(M,a,u,P). If for each REL,

!2sLas

for each ReL,

5.2.1. u

set of an open Jackson

a) Pkj = Pjk > vj ,kcCfi

b) pij = Pik , VkM , Vj,kcCL

c) cik= const. , VkcCfi

then conditions (a), (b) and (c),respectively,of Theorem 5.2.3 hold;

hence,condition (d) of Theorem 5.2.3 is also satisfied. a
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We now proceed to discuss A-simplifications that preserve the

total service time obtained by a customer from a subset of nodes. More

precisely, 3~ ~ will denote the sum of service times obtained by a
>

customer that enters a given subset of nodes C at node keC, till the

first departure from C (cf. Ch. 4, Sec. 4.6,where the case C = M was

investigated).

Theorem 5.2.4

Let JN = [M,a,o,P)be a Jackson network and let CCM. Suppose

the A-simplification of Theorem S.2.1 was performed on C.

Then the total service time in C is preserved (in distribution) iff

(a) akp(k,~) = const., keC.

*

ln ‘his Case’the ‘k,C are exponentially distributed with common param-

eter okp(k,~).

Proof

Let fk(c) be the Laplace-Stieltjes (LS) transform of ~k c, kcC.
>

Let vk(~) be the LS transform of the service time Sk at node kcC, viz.

The fk(~) satisfy the equation (cf. (3) in Theorem 4.6.1)

(2) fk(~) = p(k,~)vk(~) + ~pkjvk(~)fj (~) .
jEC

We show first that the ~k ~ are identically distributed iff (a) holds.
>

Suppose the ~k c are identically distributed with the same LS transform

(3) f(c) = fk;c), kcC.

Setting (3) and (1) into (2) gives us

‘k ‘k(4) f(~) = p(k,~)~
+ j~cpkj g+ok— f(~) , k&C .



Solving (4) for f(~) yields

p(h~)uk
(5) f(c) =

C+p(k,t)ak

Thus, whenever i,jcC,

p(i,~)u.
(6) f(~) = ~+p[i,C): =

i

whence p(i,~)cri= p(j,~)a.
1
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fOr any i,jEc,SO that (a) fOllOWS.

Conversely, suppose

Ukp(k,c)
(~) ‘k(?) 4

~+akp(k,~)

csvp(k,~)= const., for all ksC. Define

It is easy to verify by direct substitution,that the ‘k(~)> kEC, in (7)

satisfy Equation (2). Moreover, Theorem 4.6.1 implies that this is the

unique solution for (2),s0 that fk[g) = f(~) for all kcC.

We note that, in particular, (a) ensures the Sk c, kEc, to be
9

exponentially distributed with the common parameter akp(k,~), kcC. The

theorem follows from the observation that the nodes in C in the simpli-

fied network are disconnected, so that the new ~~ ~ coincide with the
9

new service times S~,for all ksC.

5.3 L-Simplifications

A L-simpZif4eation

operates on a subset of

ure 5.3.1), Typically,

(lumping simplification) of a Jackson network

nodes and lumps it into a single node (e.g. Fig-

one partitions the node set of a Jackson network

JN = (M,a,u,P) via some partition II= {CL}REL, and then one proceeds to

lump each block CA into a single node L, thus obtaining a new Jackson

network JN” = (L,a’’,a’’,P”). This situation will be referred to as a
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L-simpZifioation of JN vith ?espect to Il.
J

Now, suppose that the matrix P is stironglykmpable with respect
.

to ll,orequivalently (see [KS1], p. 124) B

(A) p(i,Cn) =p(j, Cn) , Vi,jcCk, vcR,cn&II.

E
In this case, one can define the switching probability from CL to Cn as

the common value above, viz.

(B) P(C1,Cn) ~p(k,cn) ck, cnErI

where k is any representative node in Ck.

If a partition IIgives rise

a strongly h.onpablepartit<on of

In this section we shall be

Jackson networks with respect to

to condition (A),then H will be called

P.

interested in L-simplification of

strongly lumpable partitions H.

We first investigate the effect of such L-simplifications on equi- 9

librium operating characteristics and especially on the traffic equation.

m

Theorem 5.3.1

Let JN = (M,a,a,P) be an open Jackson network. Let II= {Ck}gcL

be a partition ofllwhich is strongly lumpable with respect to P.

Let JN” = (L,a’’,o’’,P”)be obtained fromJN by means of a L-simplification

with respect to IIsuch that

-a) fOr every $,nEL

> VtEL .



251

(c) ~“(fl,n)= W#n) V!Z,n~L .

Proof

For every ksM,

(1) dk = ak + ? ‘jpjk
j=l

Summing (1) over kcC, for any keL,yields

due to (al) and (a.3). But

due to strong lumpability of H.

Since p(Cn,Ck) ~p~l and in view of (3), Equation (2) becomes

Thus,(4) shows

therefore must

that (b) satisfies the traffic equation of JN”, and

be the (unique) traffic solution of JN”.

Next, we compute for every !2,nsL,

Equation (c) now follows by substituting (b) into the right-hand side

of (5). c1
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Corollary 5.3.1

Under the simplification JN ~JN” of Theorem 5.3.1, JN” evolves

into equilibrium if JN does. ❑

An interpretation of Equations (a.3), (b) and (c) in Theorem 5.3.1

results in

Corollary 5.3.2

Let the partition IIof Theorem 5.3.1 induce a partition II’of L

into singletone blocks, i.e.{L)EII!iff CLEIT. Then,the L-simplifica-

tion of Theorem 5.3.1 leaves the following quantities unchanged:

a) the switching probabilities between blocks of IIand the respective

blocks in II’;

b) the expected equilibrium traffic rates through blocks of JIand

the respective blocks in II’;

c) the expected equilibrium traffic rates among blocks of IIand the

respective blocks

The next theorem

in II’. ❑

exemplifies how a simplification procedure (see

Appendix B) may simplify the investigation of complex simplifications.

Here, a L-simplification is decomposed into tw~ simplification stages:

a A--simplificationfollowed by a L-simplification (see Figure 5.3.1).
,..

#

Theorem 5.3.2

Let JN = (M,u,o,P)be an open Jackson network which possesses a I

state equilibrium. Let II= {CR}REL be a strongly lumpable partition of E
P such that -.

I
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a) for each LcL,

(al) p(k,cgl > 0 ,

(a.2) ok = const. ,

(as) dk= Const. , ykcCk

(ad) 6(ei,k) = ~kp(k,cfl). , ykECk .

Next, let JN” = (L,a’’,d’,P”) be obtained from JN by a L-simplifica-

.

“s
tion with respect to D (see Figure 5.3.1) such that

b) for every k,n&L ,

c=
X3!

r?
r-
:m

<m
in
8-
-r”

,1
0, if!2=n

A(b.3) pin =

p[ck,cn)
for any ksci, if 2 #n .

P(k,cg)

Then, the L-simplificationJN ~JN” above possesses a state

9 equilibrium, and it further gives rise to the following relations be-

tween behavioral frames of JN and JN”:

B c) for any blocks C~,cnc~ in JN and the respective nodes !2,ncL

E

B )

in JN’jwe have that

(c.1) the equilibrium line distribution of any node keCk equals that

of node i;

(c.2) the switching probability fromCL to Cn and from 2 to n are

related by p = (1-6Ln).P(Ci,Cn),where ~finis;n”P@$~L)

B“ Kroneckerts delta and k is any node in Cl;

[c.3) the expected equilibrium traffic rates fromCk to Cn and from

2 to n are relatedby “8’’[E,n)= (1-62n)”6(CL,Cn);

(c.4) the ratio of expected total service time in Ck to expected
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from {F}

\

A-simplification
of

Theorem 5.2.1

t- —-—--- —-- a
1w1:

● ● ● I
disconnected

%

I

block C; = Cl ~’~1

(
● *e

1:

I 1

1L-simDlificat:on
r

.

of
Theorem 5.3

/’
1

I &--1--90

to {T}

Figure 5.3.1: A Decomposition of the L-Simplification of
Theorem 5.3.2 When Operating on a Typical
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c
L?!
c-?

service time at R is [Ckl : 1 ;
r-
;m
c,0

(c.5) the ratio of the expected total number of customers in CL in
<,*
,-
PT
l.-

equilibrium,to the expected line length at node L in equilibrium
rm
e%

is ICLI : 1.

Proof

By strong lumpability of P with respect to II,we have

(1) p(k,Cn) = const. , VkcCt

for any k,nEL. It follows that for each LEL,

(2) p(k,~fl) = const. , Vk&g

Combining (2), (a.3) and (a.4) yields for each !LEL,

(3) ~(~~,k) = ~kp(k,~k) = const. , VkcCk .

We now show that the L-simplificationJN~JN” ‘canbe decomposed

into two simplification stages JN ~JNl ~JN” (see Figure 5.3.1),

where the first one is the A-simplification of Theorem 5.2.1 and the

second one is the L-simplification of Theorem 5.3.1.

More specifically, JN ~ JNI is the first stage A-simplifica-

tion,where JN~ = (M,a,o’,P’)such that

(4) for every i,jcM,

(4.1) u; ~ aip(i,~k) whenever icCL

1

0, if iECE and jSCR for some !LcL

(4.2) p~j ~ p
ij

, if i& and j~cg for some
p(i,ci) k

Thus,JN ~JN’ is the A-simplification of Theorem

of Theorem 5.2.2 and (a.4)

!?,cL.

5.2.l,and by virtue
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(5) 6! = fS(CL,i)= dip(i,tfi) whenever icC
1 !?,”

Next, show that IIis a strongly Iumpable partition of P’. For

if kcCn
every keM, CnEll,

(o, if kcCn (o, if kcCn

I
=p(k,Cn)

I

P(c@n)

i(k,~g) ‘
ifkECk, ~ # n

p(k,~k) ‘
if keCk, t # n.

From (6) it is seen that for every L,ncL

(7) p’(k,Cn) = const. , VkCC~

i.e. JIis a lumpable partition of P’. Consequently, we may proceed to

perform the second stage L-simplification JN’ ~JN”, where

JNI1 = (L,a’’,o’’,P”)such that ,

(8) for every L,ncL ,

(8.3) pin QP’(cL>cn) =

ifk+n

Thus,JN’ ~JN” is the L-simplification of Theorem 5.3.1. In view

of Theorem 5,3.1 and (5)

A comparison of (8.1) - (8.3) with (b.1) - (b.3) shows that the simpli-

fication procedure resulted correctly in JN”.
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m!
c-.
r-

Since JN was assumed to possess a state equilibrium, it follows
:m
<&
6P,

from Corollary 5.2.1 that JN’ possesses a state equilibrium, as
PF
P-
n-

JN -JN’ was defined to be the A-simplification of Theorem 5.2.1.
C=

It now follows from Corollary 5.3.1 that JN” also possesses a state

equilibrium,as JN’ ~JN” was defined to be the L-simplification of

Theorem S.3.1.

We now proceed to prove assertions (c.1) - (c.5).

Proof of (cl):

From (a.2) and (a.3) it follows that for each .LcL,

‘k
(10) Pk = ~ = const. , Vkcck.

Moreover, in view of (~), (a.3) and (2)

(11) 61 = ICflI$p(k,ck) for any kcCk, VEEL .

Finally, in view of (8.2), (a.2) and (2)

(12) u; = ICIIUkp(k,cfl) for

Hence, from (10), (11) and (12)

Assertion (c.1) now follows,since the

are determined by the p parameters.

Proof of (c.2):

Follows directly from (8.3).

Proof of (C.3):

For any Ck,CnCII,

equilibrium line distributions
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by virtue of (S) and (4.2).

Hence, for any C~>cncn,

(15) ~’(ck>cn) = (1-6Rn}6(c2,cn)

But by Theorem 5.3.1

(16) 6’(CL,Cn) = ~“(k,n) , VL,nsL

whence assertion (c.3) follows.

Proof of (c.4):

By Theorem

service time in

5.2.4 and in view of (a.2) and (2), the expected total
.

each CLcllis
1 where k is any node in Ck.

akP(k,~R) ‘

From (12) we conclude that the expected service time at the respective
.
1

node !LELis
lCRlakP(k,~k)

, where k is any node in Cl.

The requisite ratio is, thus, seen to be Icg] : 1.

Proof of (c.5):

Since the equilibrium distribution of the line size at node i
Pi

geometrical with parameter p., the respective expectation is
1 ~

is

.

Consequently, the expected total number of customers, in equilib-

rium, in each block Ckcllis

..
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CLb’k
(17) z~ =~– for any kcCL

k6Cf11-pk l-Pk,

due to (10).

We already know from (13) that p; = Pk where k is any node in CL.

Hence,the expected line length, in equilibrium, at each node RsL is

p; Pk
(18) — =—

l-p; l-pk

From (17) and (18) it follows

for any k&k .

that the requisite ratio is ‘ICJ :1. ~

We note in passing that Theorem 5.2.3 and Corollary 5.2.2 may be

used to give structural conditions that imply the behavioral conditions

(a.3) and (a.4) of Theorem 5.3.2.

In conclusion,we remark that Theorem 5.3.2 illustrates a heuristic

principle involving simplifications of the lumping type. In such situ-

ations, a network of components is partitioned into blocks and then

of them is lumped into a simpler component.

Heuristically speaking, we can expect a considerable preservat:

of behavioral frames, when the block in the base model consists of

each

on

components which are similar or uniform in some sense. Consonant with

this view, the base network of Theorem 5.3.2 was partitioned into blocks

with “similar” components,and then each block was lumped into a single

node.

The resulting lumped network turned out to be a scaled down version

of the base network with a variety of remarkably related operating

characteristics.
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5.4 Simulation Complexities of Jackson Networks
i

A simulation complexity is a measure of computer resources required

to run a computer simulation of a model. In practice, the model may be B.

run for some interval of simulation time until a sufficient number of

customers are simulated, or until some other stopping criterion is met. I

A good simulation complexity should not only allow a user to compare
B

the simulation costs of various models but should also aid him in ob-

taining a reasonable estimate of computer resources, e.g.

time and average memory space needed for the simulation.

such as maximum requisite memory, time-space product, etc.

total CPU

Other measures

are of con-

siderable interest in estimating simulation cost, though hard to compute.
‘D

In this section,we shall discuss some time eompZQxi~~Qs and space

omplexifiies as described above. In what follows we have in mind a 1

discrete simulation language which is of the transaction flow type (e.g.

GPSS; see [Schl]),or of the event scanning type (e.g. GASP; see [PK1]). I

Such a discrete simulation language makes it.easy

late a discrete event system, say a DEVS.

The language software handles the queuing up

for a user to simu-
9

of future sequential i

state

Zist)

jumps

transitions (jumps) in an ordered list (called the future event

according to their time of occurrence. It then processes the I

by computing the new sequential state,again in order of occur-
1

rence. In this context, the jumps alluded to above, are called ‘Ievents”
—

(not tobe confused with probabilistic events).
B

In queuing-theoretic context, the probabilistic analogue of a

system-theoretic event“is, loosely speaking, a discontinuity in the .Sm_ I

ple functions of the state process {Q(t)}t20. TO avoid ambiguities we

shall refer to system-theoretic events as simulation events.
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Since a particular computer simulation pertains to a particular c=
:a
Cn

though “random” queuing history, it is often reasonable, as an inter- r-
:km
l.,.?

mediate step, to define first random time complexities and random stor-
{m
b-
PT

age complexities.
r-

These random complexities should be random variables rr

e%

whose realizations measure the cost of CPU effort and memory space

required by the respective sample simulation run.

The resulting time and space complexities would then be defined as

deterministic quantities in terms of the respective expectations, time

averages, etc. Throughout the impending discussion,we shall assume that

JN = (M,u,u,P) is an

“plexitymeasures are

We begin with a

noted CT). Consider

underlying Jackson network with which those corn-

associated.

discussion of simulation time complexities (de-

the time complexity

‘1)41 Ml=m.(1) CT

C~l) is a measure of network size,and it reflects on the rate of simu-

lation events in the network, since every node is a location of “ac-

tivity”. (The number of arcs is irrelevant in this respect,because only

arrivals and departures at nodes generate such events.) C~l) is a crude

measure because it does not take note of the probabilistic topology of

JN.

C,$2)is similarly crude;

(2) Cjw ‘Ilall+l loll =fiai+fio i“
i=l i=l

It is defined as the sum of

ture rates in the network.

being dependent on the time

expected arrival rates and potential depar-

C(2) has the additional disadvantage of
T

units, in which a and a are measured; e.g.

if the time unit changes from seconds to minutes, C~2) also changes.

A better time complexity is providedby network “closeness.”
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Loosely speaking, network ‘Iclosedness”measures how “difficult”

it is to

from the

the more

leave the network. Its validity as a time complexity stems

fact that the harder it is for a customer to leave the network, 1

simulation events are going to be induced by him.

B
Denoting q+ ~ 1 - ~pi;, we define for open networks

observe that O . C;’) S 1; thus, the larger C~3), the

of visits paid by a customer to nodes in the network.

works C~3) = ~ as it

C(3) is defined
T

note of how likely a

should be.

as the “average closeness”, but

customer is to arrive at node i.

nodes which are never reached by any customer, C;3)

affected.

To remedy this deficiency, consider the number

I

larger the number D

For closed net-

1

it does not take
9

Thus, if we add

will still be

of visits of an

incoming customer at node i, during his stay in an open

work. Denoting this random variable by Ki, we define

(4) C;4) ~ E(~Ki) .
i=l

Jackson net-
D

1

closer to

advantage

(5) C:4)

DC(4) is the expected total number of visits to nodes made by an incom-
T

ing customer during his stay in the network. This time complexity comes

B
C(4) has the additionalCPU effort than any of the above. T

of being computable for open networks (see Remark 4.6.2)

.Lldl.
1141

which also shows that C(4)
T

takes full account of the network topol-

ogy. Recall that 6 is the traffic solution of the network, and that 1

B

9
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in equilibrium it coincides with the

tions at network nodes.

Thus, (5) gives rise to another

is the equilibrium ratio of expected

<E

W
<-.

1 r-

expected rate of service comple-
;W
<m
<m
.-
,1”

F-.

(4)
interpretation;namely, that CT

service completion rate to expected

exogenous arrival rate. This ratio can be.viewed as the internal load

(= II~II) induced

it makes sense to

by a unit of external load (= a) in equilibri~, and

compare these quantities for networks with fixed ex-

ternal load. However, C:’) ignores simulation events induced by cus-

tomers that were initially in the network, as well as those whose stay

in the network has not been completed.

C~4) has yet another interpretation as a measure of “closeness”.
m

To see this note that ~u. = ~ 6.q. (see Theorem 4.4.4) whence
1 11

i=l i=l

(6)

Thus

1 ~ C;4) : 1

max{q.: l~i~m} min{qi: lsism}
1

(3)
C(4) is approximately equal to CT
T , and

.

this approximation becomes

exact as the qi approach a common value. Indeedj it can be shown that

‘4)---+“CT
as C~3)+0.

C(4) is suited for situations when the cost per simulated customer
T

is of interest. For instance, one may wish to simulate a certain num-

ber of customers, so as to obtain reasonably reliable statistics. Typi-

cally in this case, the number of customers to be simulated is fixed,

while the simulation time interval is unspecified.

A different situation arises when the simulation interval is fixed

and the number of customers is unspecified. In this case, the total

number of simulation events oc$urring in a simulation interval [O,t]

reflects on the requisite CPU effort. Observe that a simulation event

occurs iff there was an exogenous arrival or a service completion at
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some node. This observation gives rise to

(7) Cp (t) 4 1 E(~D. (t))
Ilallt i=ll

where Di(t) is the total number of service completions

C(5) is interpreted as thesimulation interval [O,t]. ~

load per unit external load in the simulation interval

(4)
C~5) differs from CT in the way it accounts for

tially in the system and those who don’t leave it. It

sentation (see Theorem 4.2.1)

(8) Cp) (t) =

/
]]a~lt~E1oi“ ‘pr(~i(x)>o)dx.=

(-s)(t)s U for any tfrom which we conclude that CT
1141

Jackson networks in equilibrium, ~C(5) becomes

at node i in the

total internal

[O,t].

customers ini-

has the repre-

~ o. For open

(9) C+5)(t) E -.

(5)It is interesting to note that in this case CT and C~4) coincide.

9

D

C(5) may be used to estimate the total number of service comple-T B

tions that occur during a simulation whose stopping rule is the arrival

of N exogenous customers. We define E

(10) C+6)(N) 4 E(~D. (~))
i=l 1 Ilall

which for open networks becomes, in equilibrium,

(11) C;6)(N) = N _ .

Notice that —
11~11

is the expected arrival time of the N-th customer.
B

Thus,C:’) is an estimate of the number of simulation events in the simu-

lation interval [0, —
11:11 ‘“

However, C~6) is not the exact expectation of the total service
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completions required to simulate the network until the arrival of the

N-th customer, because this time interval and the total number of

service completions occurring in it are apparently correlated.

We now consider time complexities that come closer to measuring

actual CPU time.

Let T be the processing time of a simulation event. T is a random

variable whose randomness is mainly due to the variable length of the

future event list at the time of processing. In practice, T might

be a constant plus a term proportional to the length of the future

event list.

(7) byNext, refine CT

(7) ~ &iT) .(12) CT
i=l

In other words,C$’) is the expected CPU time required for simulating an

incoming customer. lJnfortunately,it is not readily computable. Even

if E(T) is known, we still need to know how Ki and T are correlated.

‘7) becomes for open networksWhen zero correlation can be assumed, CT

(13) C;7) m
I[a[l

= E(~Ki)E(T) =—
i=l

,Iall E(T) .

A similar situation arises when

C(6) by defining respectively
‘T

(5)an attempt is made to refine CT and

(B)(tl Q
m

(14) CT E(zD. (t:T)
lla~lt i=l 1

.

C(8)(t) is the expected total CPU time required to process service com-T

pletions (total internal load) in the simulation interval [(),t]per unit

Likewise, C~9)(N) estimates theexternal load in the same interval.
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expected total CPU time required to simulate the network until the N-th

exogenous customer arrives.

We now proceed to discuss simulation space complexities (denoted

Cs). Space complexities have two components: static and dynamic.

Static space complexities arise from the memory storage required

to represent a queuing network topology in a computer, not including

waiting lines. Thus, these complexities are essentially a measure of

network size in terms of nodes and arcs. For example,

(16) C&) ~ SNIMI + E
(i,j):pij>o

‘A

where sN and s~ denote memory storage required to represent a node and

an arc respectively in the computer, exclusive of waiting lines.

Dynamic space complexities, on the other hand, reflect the total

length of waiting lines in the network during a simulation. For example,

‘2)(t) A E( SUp {~Qi(T): O<T~t}) .(17) Cs
i=l

C(2) estimates the maximal total length of queues in the simulation
s

interval [O,t]. Unfortunately, it is difficult to compute. Consider

instead the smaller measures
m...

(18) c(3)(t) ~ SUp {E(~Qi(T)): o~~~t}
s

i=l

and

/

(19) C~4)(t) ~ : E(; Q (T))d’T .i
i=l

which are more amenable to computation.

For open Jackson networks in equilibrium, both C:’) ad L-4)

reduce to the same time independent function

m.

‘4)(t) ~ E(~lQi(t))(3)(t) = Cs(20) c~
= %+ “
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where p. = $

1 (see
i

As the network

1f)+ as —
l-pi

267 CR
:E
<-.
r-
:W

Theorem 4.5.1).
<,.?
&-
*-
*T

approaches instability (viz. pi -l for some i),
I.-
r~
K%

.

Notice that the variance of the instantaneous total length of
m

queues ~Qi(t) in equilibrium is
i=l

(21) v(fQi(t)) ~~ ‘i
i=l

i=l (1-pi)2

due to the independence of the individual queues (see Theorem 4.5.1).

Consequently, as the network approaches instability, V(~Qi(t))-M
i=l

‘3) and C~4) as dynamic storage
1

as , and our confidence in C
(1-P:)2 s

J.

estimates decreases very quickly.

C(3) and S~4) were defined as functionss

When the simulation requires that sufficient

(3) and(-$)simulated, the counterparts of CS

of the simulation interval.

number of customers be

are respectively

N
‘5)(N) ~SUp {E(i~lQi(?))(22) Cs :()<T<—

1141 }

and

Ilh
(23) C~6)(N) ~~ .

J

m

1141
E(~Qi(T))dT -
i=l

o

In equilibrium,, s (6)C(5) and CS reduce to the same constant function.

We conclude this chapter by comparing the effect of some of the

simplifications in Sections 5.1 - 5.3 on some of the simulation com-

plexities of this section. Figure 5.4.l summarizes these effects. It

employs the following notation.

A simulation complexity can be non-increasing (denotedby +), or

unchanged (denotedby =). A question mark indicates that the behavior

I
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F-simplifi- A-simplifi- L-simplifi- L-simplifi-
cation of cation of cation of cation of

Theorem 5.1.5 Theorem 5.2.1 Theorem 5.3.1 Theorem 5.3.2

~;1) = = + +

~;2) + + = +

~;3) + + ? ?

~;4) + + = +

& + +0 o= +0

$1 + +0 o= +0

~:11 + + + +

C:2) = ? ? ?

~:3) o= = ? +0

~:4) o= = ? +0

~$5) o= = ? +0

&) o
= = ? +0

Figure 5.4.1: A Comparison of the Effect of Various Simplifications
of Jackson Networks on Some Simulation Complexities.

B

I

I

I
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m
x!
<7
r-

is unknown or mixed (dependingon simplification parameters). An
:@
c,0
co
e-

appended circle means that both the base model and the lumped model
PT
P-

of the indicated simplification are assumed to be in state equilibrium.
C=

The results in Figure 5.4.1 follow from the theorems alluded to

in the headings ‘ofits columns and from the discussion in this sec-

tion. It should be born in mind that the results presuppose that the

conditions of those theorems hold for the simplificationsunder con-

sideration. For those complexities which are functions of t or N,

the comparison is valid for any fixed argument.



CHAPTER 6

CONCLUSION

6.0 Summarv

lines of research have been pursued. The first line of

concerned analysis and simplifications of discrete event

The logic of deterministic discrete event systems was

when formalized by DEVS-related concepts. A hierarchy of

Two

research

systems.

studied,

morphic relations was developed in accordance with the conceptual

framework of Appendices A and B. An extension of this framework to

stochastic discrete event systems was proposed. In this approach

system-theoretic and statistical-theoreticaspects are combined via

representation in coordinate probability space. A hierarchy of morphic

relations for stochastic systems was then developed in terms of

measure preserving transformations. Finally, we derive a methodology

that provides sufficient conditions which ensure preservation of

behavioral frames under point simplifications.

The second line of research concerned analysis and simplifications

of Jackson queuing networks with single server nodes. In studying

their operating characteristics, especially state equilibrium, a

number of theoretical gaps in the extant theory have been closed.

Results on open and closed Jackson networks were unified as results for

mixed networks. The main result is derived in a study of equilibrium

traffic processes on arcs, as an extension of Burke’s Theorem (see

[Bl]) from M/M/s queues to Jackson networks with single server node.

This result has applications to decompositions of Jackson networks.

270 I



271

Finally, three types of simplifications of Jackson networks are

exemplified, as well as their effect on a number of simulation

complexities associated with them.

6.1 Further Research

Several lines of

c!!

further research emerge from these studies. As

regards the area of discrete event systems, the DEVN (discrete event

network specification) concept warrants special attention.

The ability to identify components in a DEVS (so that it can be

represented as a DEVN) entails a conceptual simplification and better

understanding of its operation. A hierarchy of DEVN morphisms, where

each morphism can be decomposed into local DEVS morphisms between

components, is of interest for similar reasons. This line of study

has potential applications to modeling of discrete event systems.

In the study of .Jacksonnetworks, the lack of customer-oriented

operating characteristics, such as waiting and transit times, is a !

glaring omission. Little is known about these important problems

(see [Rl] for a survey of related problems). We remark that their

solution is necessary for attaining a balanced set of operating

characteristics.

More research is also needed to elucidate the nature of traffic

processes on non-exit arcs. An immediate problem is to prove or

disprove the conjecture that such arcs cannot have Poisson or even

renewal traffic on them (excludingthe trivial case pii=l). This line

of research has potential applications to decompositions of Jackson

networks.
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Finally, an attempt should be made to generalize Jackson networks I

to more realistic queuing network models. The main directions of

generalization that have recently emerged are: general servers; general B

switches and multiple classes of customers.
I

In addition, we suggest that the simplification methodology (set

forth in Theorems 3.1.1 and 3.2.1 in Chapter 3) can be applied to
I

simplifications of the generalized queuing networks alluded to above.

As an example, we claim that it readily provides a proof for the 9

following conjecture: in any queuing network, the idle-busy period

B
process is invariant (in distribution) under queuing disciplines such

as first come first served, last come first served, time sharing and
D

preemptive resume.



APPENDIX A

SOME BASIC SYSTEM THEORY

A.O Introduction

This appendix provides some system-theoretic

readers who are not familiar with the terminology

r-
:s.
<.45

<m
l--

Fr

h-

rr
Cn

background for

and mathematically

oriented approach to System Theory. The entire appendix is a digest of

the relevant sections in Part 2 (Chapters IX and X) of [Zl], with

rather minor modifications. The latter merely consist of slightly

altered conventions and terminology that better conform to the goals of

this thesis.

The appendix is intended to be an introduction to Chapter 1. It

also outlines

are fitted.

the conceptual

A.1 Mathematical Svstems

framework into which Chapters 1, 2 and 3

The Mathematical System concept is a fundamental formal tool for

description and analysis of most real life systems. The central con-

ception is that the system evolves in time through a succession of

states, under some externa~ input. It produces an output according to

its current state. The following is a standard formal definition of a

ma~hematical system.

,4

Definition A.1.l \

A Mathematical System (also known as an Input-Output System, or

I/O System) is a structure

273
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s = (T,x,n,Q,Y,6,a)

where

T is the

X is the

!2is the

Q is the

Y is the

6 is the

A is the

time base set

input value set

274

input segment set

state set

output value set

state t~ansition function

output function 9
subject to the following constraints:

.

a) T is a well-ordered Abelian group I

b) The input segments in O are functions u = w(t@21
where

u:(t1,t2]4””x
I

t1,t2e T.

c) Q is closed under composition (juxtaposition)of contiguous I

input segments, viz.

where the function ‘(t1,t2]
@~{t2,t3] = ~tt@3]

is defined by

@+3]
(t) (‘(t1,t21 (t), ift1<t<t2

~ ~(t2,t3]@)’ if t2< t < t3k.

d) 6 is a function 6:Qx~-f’Q satisfying the following composi-
B

tion property:

‘%1J21 J“it2,t3]
cQ,VqGQ,
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e) A is a function X:Q-Y.
u

An important operation on the input segments is described by the

translut<on ope?ato~ TRANST where TRANST(U) = ~ such that if

U=(ll
(t1,t21

then ~ = ~
(t1+T,t2+T]

is defined by ~(t) ~ U(t - ‘r).

If O is closed under translation, we may extend the composition

operation from contiguous input segments to arbitrary input segments

‘= ‘(t1,t2]
and u“ = U“

(t3?t~l
by

ox%” = u“ where u“ = ti’1
(t1,t2+t4-t31

is defined by

1’u(t), if tl< t s t
2

u“(t) ~

1(TRANS (w’))(t), ift2< t st2 + t4 - t3
‘2-t3

We now define an important class of systems.

Definition A.1.2

A Mathematical system S = (T,X,n,Q,Y,6,A) is time invmiant if

a) ~ is closed under translation viz.

uen ~ TRANST(w)C~, for any T 2 0.

b) 6 is time invariant viz.

VqeQ, VmEfl, VTZO, d(q,w) = d(q,TRANST(w)).
•1

only

Notice that for time invariant systems, it suffices to consider

those input segments that start at the origin.

Our interpretation of the system concept runs as follows.
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A system is conceived of as having two elements: an internal element

which we call “structure”, and an external element we call “behavior”.

The term “structure” refers to the state space and the state transi-
B

tion function 6. Pictorially, a system is viewed as some black box

which undergoes internal changes when stimulated by an input segment. I

The internal change (the transition function) sends the system into

B
a new state as a function of the initial state and the input segment

only. Moreover, this internal state transition is deterministic.
I

On the other hand, “behavior” refers to the external and observable

manifestations of the internal processes of state transitions. i

Pictorially speaking, a behavioral aspect is recorded by inserting a

9
particular probe into our “black box” which can measure a certain

aspect of the system’s internal state.

Consonant with these views, we introduce the following definitions.

i

Definition A.1.3

A mathematical state-system is a mathematical system
I

s = (T,X,0,Q,0,6,●) with unspecified output value set Y and output

function A.
•1

Definition A.1.4

A behavioral frame of a mathematical state-system

s = (T,X,fi,Q,O,6,=) is a structure Y = (Y,A) where the symbols in
I

the angular brackets have the same meaning and constraints as in

Definition A.1.l. I 9u

Our definition of a behavioral frame is a simplified version of
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the concept of experimental frame in a modeling context (see [z2]

and [Zl] Ch. II). In this context the term experimental frame is

used to capture the observational limitations imposed by reality on

the modeler. Here, however, we deal with an idealized situation and

both terms may be considered coincident. Notice that when we parti-

cularize to a certain behavioral frame of a mathematical state-system,

we obtain some 1/0 system of Definition A.1.l.

In other words, a state-system is more fundamental in the sense

that it spawns a host of 1/0 systems which stand in a one-one relation

to all possible choices of its behavioral frames.

We regard

state-system.

representative

this collection as an equivalence class induced by a

The symbol (T,X,Q,Q,O,6,*) will also stand for a

of such a class. This notation will be used in the

sequel, whenever we wish to focus on the state structure, whereas the

behavioral frame may remain unspecified. Consequently,the dots in

the structure (T,x,$2,Q,0,8,=) should be understood as generic variables

or “don’t care” symbols according to the context. Furthermore, the
.

terms state-system, representative system or simply system will be

used interchangeably, whenever the context precludes ambiguities.

Indeed, from a modeling standpoint, ‘structure!’is more fundamen-

tal than “behavior”. The modeler starts with a set of empirical data

(“behavior”),and tries to postulate a model (“structure”),that can

account for the data. The process of modeling consists of successive

refinements of that model (structure adding) to account for a growing

set of empirical data. Theoretically, if the full structure (state-

system) is known, then the modeler can predict any system behavior,and

modeling is completed. In most cases, this requires infinite time and



278

cannot be accomplished.

Mathematically, the concepts of “structure” and “behavior” are

completely dual; “structure” accounts for all “behavior”, while given

all “behavior” we can always postulate a “structure” to account for it.

To clarify our view we point out an analogous situation in the field

of formal languages, (see e.g. [AU1] Ch. 2, Sec. 2.1.2). A formal

language is the analogue of a mathematical system. It may be dually

defined either by a set of transformations (called productions) on

some initial strings, or by specifying the set of strings thus gener-

ated. Given the set of productions (“structure”)we may run (or

simulate) the system in various ways to yield various strings

(“behavior”). Conversely, the enterprise of modeling becomes that of

finding the set of productions that can account for a given set of

strings.

Mathematical systems can be described in terms of their state and

output trajectories. These trajectories assign a full state and an

output value respectively to time points.

Definition A.1.5

Let S = (T,X,fl,Q,Y,CS,A)be a mathematical system. Let q~Qbe

any state and let we O be any input segment

The t~~”eetory of (qjw) is a pair TRAJ(q,u)

a) STRAJq,w:[t~$tzl‘Q is a function

(
q,ift=tl

where u:(t1,t2]--@x.

~ (STRAJq,0,OTRAJq,.) where

defined by

STRAJ
q,w(t) ;

\

a(q,ul(tl,tl), if t~(tl,t] and ul(tl,t]~n

undefined, otherwise
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-i
and called the state trw”ecto~ of (q,u).

b) OTILAJ~,u:(tl,t2]+Y is a function defined by

OTRAJ
q,(ll(t)

~ l(STRAJq,u(t))

and called the output trajectory of (q,w).
u

To wrap up the discussion of mathematical systems we show how to

identify subsystems within a mathematical system. Formally, we define

Definition A.1.6

Let S = (T,X,!2,Q,Y,6,A)be a mathematical system. A mathematical

system 6 = (T,X,~,~,Y,$,~) is a subsystem of S if

L-J

In other words, a subsystem is a system restricted to a subset of

states. Notice that for a subsystem ~ of S to be well-defined, it is

necessary and sufficient that ~ be closed under 6 and h. That is

q~~ and uf=h ~ d(q,w)~~ .

Next, we turn our attention

systems and their trajectories.

sider here is called morphisms.

to relations among mathematical ,

The class of relations, that we con-

Roughly speaking, morphisms preserve

various aspects of system structure and behavior, in a complexity-

-t
A vertical bar designates restriction of a function domain.
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reducing manner.

Definition A.1.7

to a

A system morphism from a (mathematical)system S = (T,X,0,Q,Y,6,A)

(mathematical)system S’ = (T”,X”,O”,Q’,Y’,6”,A”) is a triple

(g,h,k) subject to the following restrictions:

a) g is a function g:fl”-~ called the input segment encod<ng

funet<on.

b) h is a subjective

decoding function

c) k is a subjective

function.

(onto) function h:~~Q” called the state

and ~CQ.

function k:Y*Y’ called the output decoding

d) VqE~, Vu’G$l” we have h(d(q,g(w’))) = 6“(h(q),u”)

i.e. t~ansition function preservation.

e) Vqc~ we have k(~(q)) = X’(h(q))

i.e. output function p~eservation.
U

The relations among the components of S and S“ are depicted in Figure

A.1.l.

The preservation aspects of the functions h and k with respect to

rSand A respectively are described by the commuting diagrams of

Figures A.1.2 and A.1.3 respectively.

k important way of viewing morphisms is to regard them as system

simplifications (see Appendix B for more details). Informally, a

simplification involves reduction of complexity as well as preservation

of certain aspects of structure and behavior. Consonant with this view

we give the following interpretation.
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The encoding function g matches compatible input segments. The

decoding functions h and k simplify the system structure and behavior

respectively. The simplification aspect of h and k results from the

fact that they are subjective (onto) but not necessarily injective

(one-one), in view of properties b) and c) in Definition A.1.7. Such

maps incur an information loss, when one attempts to deduce the pre-

image from its image. This information loss embodies the complexity-

reduction effect while properties d) and e) in Definition A.1.7

represent the preservation effect of a simplification.

State and output trajectories are sufficiently important to

warrant a separate morphism concept.

Definition A.1.8

‘et qtl, t2] and~it3, t4]
be input segments of two mathematical

systems S and S“ respectively.

)

Let q and q“ be states of S and S“

TRAJ(q,w) to TRAJ(q”,u-) is a triple

respectively.

A trq”ectqj morph{sm from

(MATCH,h,k), subject to the following restrictions:

a) ~TCH:[tl,t2]~ [t3,t4] is a bijective (one-one and onto)

function called the time matching function.

b) h:Qq,w~-Q~.,u. is a subjective function where

Q = {q~Q: ~te[tl,tz] aq = STRA,Jq,u(t)] and similarly
q,u

for Q“. h is called the state decoding function.
q ,W””

C) k:y_Y’ is a subjective function called the output decoding

j?unction.
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d) Vt,t’ ~[t@2], t s t“ ~ MATCH(t) s MATCH(t”)

i.e. MATCH preserves ordering.

e) vt6 [tl,t21,h(STRAJ~,u(t)) = STRAJq.,w,(MATCH(t))

i.e. state tra~”ectory preservation,

f) ‘t~[t1,t2], k(OTRAJq,u(t)) = OTRAJq. ,.,.(~TCH(t))

i.e. output trajectory preservation.

,Lu

•1

Roughly speaking, a system morphism (g,h,k) is a super trajectory

morphism which is uniformly good for any (q,g(w’)) and (h(q),u”).

We now define some important cases of specialized system

morphisms.

Definition A.1.9

Two systems S = (T,X,!2,Q,Y,8,A)and S’ = (T*,x*,Q*,Q*,Y*,6”,A*}

are called compatible if

a) T=T’

b) X=X”

c) ,(-)=0’

d) Y=Y”

❑

Definition A.1.1O

Let S and S“ be compatible systems and let i denote the identity

map. Then:

a) A system morphism (i,h,i) from S to S“ with ~= Q is called a

system homomorphism.
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b) A system homomorphism (i,h,i) from S to S“

bijective

When focusing

is called a system isomorphism.

on the state structure we obtain

c=

:Z
<’-2
r-

such that h is :*
<-

•1

the following

analogue of the system morphism concept.

Definition A.1.11

A system state-mo~hism from a representative system

s = (T,X,fi,Q,O,d,o) to a representative system S’ = (T”,x”,f2-,Q-,o,d’,0)

is a pair (g)h) with the same meaning and restrictions as in Definition

A.1.7.

Likewise, a state-tz@”ectory morphism is a pair (MATCH,h)with

the same meaning and restrictions as

It is now obvious how to define

systems and how to proceed to define

<..1
1-...

in Definition A.1.8.
u

compatibility of representative

the concepts of state-homomorphism

(ijh) and state-isomorphism (i,h) among them. The case of state-

trajectory morphisms is analogous.

Finally, we note that morphic relations induce a hierarchy on the

class of systems, as it is not difficult to see that these relations

are transitive. We shall not dwell on this point in this section.
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A.2 Iterative Specifications of Mathematical Systems

When dealing with a mathematical system of a special type, it is

often more convenient to specify it indirectly at a certain level of

detail. A translation process will then furnish the means of going

from that particular specification to the normal system specification

of Definition A.1.l. An important class of more structured specifi-

cations for time invariant systems is the class of iterative system

specifications. Essentially, what happens here is that the input

segment set is generated by a set of elementary input segments and

similarly for the state transition function.

First some background concepts. Let (X,T)O be the set of func-

tions of the form u:(O,~]-X, -rGT. The composition operation

defined on (X,T)O becomes u
(o,Tl]@~io,T2]= qo,T1+T2]

where

{.

‘(q
(t), ifO<tS~l

~?o,T1+T2]
(t) :

~io,q
(t - ~l)j if T < t ST + T1 12

This renders (X,T)O and the composition operation a semigroup.

If rC(X,T)o , then

semigroup generated by r

called the generator set

the composition closure of 1’is called the

and is denoted 1’+. If r+ = .(2,then r is

of $2. In that case, given uE$l, we wish to

decompose it into generator segments in a canonical manner, via right

or left segmentation. The term segmentation refers to the operation of

restricting an input segment w to subintervals. More specifically, a

left segment of u
(tpt21

at t is defined by mt> Q oll(tl,t]

t c (t1,t2]. Similarly, W<t ~ ml(t,t2] is a right segment

for any

‘f ~(t1,t2]
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for any t G (t@21. The canonical decomposition we choose is that

obtained by taking successive maximal left segments and then chopping

them off the remaining segment repeatedly.

More accurately, U1,U2,...unc ~ is a maximaZ length. segment

(m.Z.s) decomposition of u if for each i = 1,2,...n, whenever ~“er

is a left segment of ui@ui+l@...@un then u“ is a left segment of Ui.

The merit of the m.1.s decomposition is the fact that if it exists,

then it is

admissible

(unique)m.

unique (see [Zl] Ch. IX Sec. 9.8.1). We say that r is an

generator set for Q if Q = r+ such that each wGQ has a

1.s decomposition.

We are now ready for the main definition.

Definition A.2.1

An iterative specification (of a mathematical system) is a

structure G =

T is the

X is the

Q is the

Q is the

Y is the

6 is the

A is the

(T,X,Q,Q,Y,6,X) where

time base set

input value set

input generator set

state set

ou~ut value set

tmnsition function

output function

subject to the following restrictions:

a) T is a well ordered Abelian group.

b) L?is an admissible set of generators of the form

u:(O,T]+X, T6T.
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c) 6 is a function 8:Qx$l-+Q satisfying the following

composition property:

d) A is a function A:Q-+wY.
n

The function 15in the above definition can be extended as follows:

Definition A.2.2

Let fi+ be the translation closure of ~+. The extension of 6 is

a function ~:Qx~+-* Q defined recursively by:

where o @u 0...@u
12

n is the m.1.s decomposition of w in terms of the

translated generators TRANSt ($2).
1

We now show how an iterative specification is translated into a

time invariant system.

Theorem A.2.1 *

If G = {T,X,$2,Q,Y,6,A)is an iterative specification, then it

induces a time invariant (mathematical) system SG = (T,X,H+,Q,Y,~,~).

Proof

See [Zl] Ch. IX Sec. 9.8.2.

a

•1
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An iterative subspecification ~ of an iterative specification G

is defined by restricting 15and A to ~CQ and fiCQ precisely as in

mathematical subsystems (see Definition A.1.6). It is easily seen

that if an iterative specification G induces a mathematical system SG,

then any iterative subspecification ~ of G induces a mathematical

subsystem ~
G
of s

G“

We now turn

specifications.

morphisms in the

our attention to morphic relations among iterative

This will follow the pattern, set up for system

previous section.

The basic definition now’follows.

Definition A.2.3

A specification morphism from an iterative specification

G = (T,X,$2,Q,Y,d,a)to an iterative specification G- =

(T”,X’,f?”,Q’,Y”,d”,A”)is a triple (g,h,k), subject to the following

restrictions:

a) g is a function g:~’-~+ called the generator encoding

function.

b) h is a subjective function h:~-+Q” called the state decoding

function and ~c Q.

c) k is a subjective function k:Y-Y’ called the output decoding

function.

d) VqG~, Vti”GL?pwe have h(~(q,g(u”))) = d“(h(q),u”)

i.e. transition function preservation.

e) VqE~we have k(~(q)) = A’(h(q))

i.e. output function preservation.

El
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Just as iterative specifications translate into mathematical

systems, specification morphisms expand into system morphisms.

Theorem A.2.2

Let (g,h,k) be a specification morphism from

(~,fi,~)is a system morphism from SG to SG. where

Proof

9

G to G“. Then

a) ~ is the extension of g to ~$ derived as follows:

Let u~~u~s,...,@u~ be the m.1.s decomposition of

cl)’= LO”
(tlq

~.~? in terms of the translated generators

TRANSt (Q”). Then ~(u’) = g(w~)@g(u~)@...@g(u~).
1

b) fi=h

c) i=k

See [Zl] Ch. X Sec. 10.5.

Specification homomorphisms and isomorphisms as well as the con-

cepts of specification state-morphisms and trajectory morphisms may

be defined analogously to those in the previous section.

We will not elaborate on this point.

9

D



APPENDIX B

FORMAL SIMPLIFICATIONS

B.O Introduction

Simplification is a widely used method in

fications are applied to such diverse entities

the Sciences. Simpli-

as equation systems,

networks, system-theoreticmodels etc. They are extensively employed in

modeling and simulation of systems, deterministic as well as stochastic.

In the conceptual framework developed by Zeigler in [Z2], [Z4],

[Z5] and [Z6], going from a base model to some lumped model is a

typical instance of a simplificationprocess. The simplification effect

manifests itself at various levels. When operating on informal descrip-

tions of system-theoreticmodels, a simplification may aggregate compo-

nents, simplify assumptions etc. (See e.g. [WZL1], [Z3], [Z7]). On

the other hand a simplification of a probability space may be viewed as

a measure preserving coarsening of the underlying sample space and

u-algebra. A simplification of an equation system is obvious enough.

In spite of their different appearances, all the simplification

notions above have an underlying conceptual similarity demonstrated by

two salient features.

1) They all reduce, in some sense, the complexity of the entity

to be simplified.

2) They all are meant to preserve some aspects of the entity to

be simplified.

The rationale for the enterprise of simplification is what may be

termed the “simplification strategy”. The essence of this strategy is

291

:Iam
W?
<,0

l--

-T

l“-

PT
es



292
1

the ability to take advantage of a simpler entity [due to feature 1)],
R

whose manipulation is easier, yet yields valid conclusions pertaining

to the original entity {due to feature 2)]. Thus, a simplification 1“

could enable us to use the simplification strategy towards a solution

9of our problem.

In order to be able to deal uniformly with the diverse manifesta-
1

tions of simplifications in a variety of contexts, it is necessary to

formalize

above. A

features,

the conceptual similarity described by features 1) and 2) I

formal definition is required to capture these intuitive

so as to allow us to derive and recognize a broad range of I

simplification instances by an assignment of the appropriate semantics.

!
In particular, this would provide us a uniform conceptual framework

for treating simplifications of deterministic systems and stochastic
1

ones alike.

We proceed to propose such a formalism in the sequel.

B.1 Simplification Predicates

Our discussion employs predicate-like notation similar to [Fol].

Assume that the following are given:

a) A set Z of “system” (descriptions).

b) A family {Ya}ocz of “aspeet” sets for each element in

“systems”.

C) A set C of “compzetity” functions for “system’;

a function c:X-K and Kc is a totally ordered
c

order relation “SC”.

where CCC is

set under an
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X3
s“:
r-

d) A set TIof “preservation” relations between “aspect” pairs in
;m
c,6
c,-

is “preserved“ in the sense of ITEIIby ‘taspect”$2 G Y. .
2

The terms cloaked in double quotes should be understood as

semantics free, although they were chosen so as to be suggestive.

Instances of the cloaked terms are obtained by interpreting them in

some domain of application. Thus, an instance of “systems” can be a

system of equations, a set of mathematical systems (see Appendix A), a

set of DEVSS (see Ch. 1), or a set of queuing networks. An instance of

“aspects” could be a particular set of solutions, behavioral frames

(see Ch. 1 and Ch. 2) and functions thereof (e.g. means, time averages

etc.).

The complexity functions are devised to,capture quantifiable as

well as intuitive complexity notions; e.g. computational complexity of

algorithmic solutions, conceptual complexity of a mathematical system,

size of a queuing network etc. (See also Sec. B.3).

A “preservation” notion can range from outright equality to the

existence of a translation process from Y to Y (e.g. as formalized
‘1 ‘2

by various morphisms in Ch. 1 and Ch. 3).

Various concepts of approximate preservation, e.g. allowing a

tolerance of an G-error such as in approximate morphisms (see [Zl]

Ch. XIII) and other relaxed versions of preservation (e.g. in mean

rather than in distribution), fall into the category of “preservation”

notions.
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M ordered pair (~,~)~ X2 is a simplification over Z relative to c, B

if c(~) “S=” c(~). To stress this fact we shall also write f31-c*A.
9

Following [z3] we term B the base mode2, and

simplification f3&A.

Next, a simplification procedure over z

(61>A1) , (A1,~2),. . . . (an-l, An) over X2,such

cation for some cE C. In this case we write

A the hunped model of the ■

D
is a finite chain of pairs

that f31~An is a simplifi- 1

$l~~~+”””-ln”

9

A simplification procedure merely decomposes a simplification

operation into a chain of successive stages, each of which may be re-

garded as an “intermediate simplification”. Simplification procedures

simplify the analysis of complex formal simplifications. For if a

simplification can be broken down into a composition representation in

terms of successive application of “elementary simplifications”, then

its analysis reduces to the examination of the “easier” simplification

effect that is brought about in each stage. Thus, simplificationpro-

cedures provide a means for “simplifying simplifications”. An example

of a simplification procedure is described in Sec. 5.3 of Ch. 5.

Let us define a simplification predicate S on sets of the form

“aspect” qBeYfi is m-’’preserved”by the “aspect” $A~YA under the

simplification (6,A) relative to the “complexity” notion c).

In this case we say that the simplification j3~A is vaZid in the

“aspect” pair (V ,! ) under the “preservation” notion m.
f3A

Simplification predicates enable us to make statements about

simplifications in a formal manner. They also embody our intuitive
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requirements which were preimposeclat the outset on any formalism for
;m
cm
in

simplifications. The complexity reduction idea is obviously captured
F.-.
rr,
*-
rw

by the “complexity” function concept; the preservation idea is built c%

into the concept of “preservation” relations.

B.2 Simplification Problems and Their Solutions

A shiplifieation p~obkrn SP is stated in terms of a set of

simplification predicates to be evaluated over a simplification problem

domain P(SP) such that 22(SP)c U {(6,a)}xcx(Y6xYA)xrI.
(f3,A)Ex2

Some of the frequently encountered simplification problems can be

formulated as follows:

SP1: Given a simplification 6*~”A*, characterize all “aspect” pairs

($B,vA)~yb*xYA* and “preservationi’relations iTEIT,such that

s((@*,a*),c*,($e,$~),~) = ‘true’.

The problem domain of SP1 is O(SP1) = {(6*,A*)}X{c*}X(y~*xYA*)xlI.

Intuitively, SP1 is tantamount to taking

8* %A’ and asking: what “aspects” are

sense of preservation? More simply, the

preservation scope of B*@A*.

a particular simplification “

“preserved” by it, and in what

problem is to find the

SP2: Given a subset of “systems” pairs rcz2, a collection of “aspect”

preservation

The

relation w*GII - characterize all simplifications fl~A over r,

such that S((6,A),c,($~,~;),r*)= ‘truet.

problem domain of SP2 is 0(SP2) = u {(B,A)}XCX{($;,V:)}X{T*}.
(B,A)~ r
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Intuitively, SP2 is tantamount to taking a set of prospective simplifi-

cations, then choosing an

notion, and asking: what

respective “aspect” pair,

relation, and relative to

“aspect” pair for each and a “preservation”

simplificationswould be valid in their

under the predetermined “preservation”

what “complexity” criteria? In other words,

we wish to find out the validity scope of our prospective simplifica-

tions and the scope of complexity reduction achieved by them.

A solution SSP of a simplification problem SP is a triple

s= (‘assertion’,SP ‘proof’, )‘algorithm’ where

1. ‘assertion’ is a statement asserting the scope of truth

a simplification predicate S when evaluated over D(SP).

2. ‘proof’ is a proof of correctness for ‘assertion’.

of

3. ‘algorithm’ is a finite decision process that effectively

evaluates the simplification predicate S for any argument in

V(SP).

The quotes cloaking the elements in SSP merely indicate that they are

generic. Usually, only ‘assertion’ and ‘proof’ need to be given,

whereas ‘algorithm’ often turns out to be implicit in the condition

set of ‘assertion’ (see Example B.4.3).

9

I

9
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:2
<?
r .-

B.3 Complexity Notions
:W
cm
<m

Complexity notions, be they formal or intuitive, are used to
.-
FT
P-
rT

capture some aspect of difficulty presented to the investigator by K%

the entities under consideration. Formally, a complexity notion for

a set of entities Z is represented by a complexity function C:Z-+KC,

where Kc is a totally ordered set under some order relation s
c“

This definition ensures that for any two entities U1,026Z, the

associated complexities C(ol) and C(U2) are comparable under SC.

When the complexity notion c is quantifiable (that is, Kc is a

subset of the reals), then the complexity function c will be referred to

as a complexity measure.

Our main interest in the complexity concept will lie in its role

as a simplification criterion. Since simplifications are perceived as

complexity reducing maps among the entities under consideration,

examining the complexities of the prospective base and lumped models is

a means of deciding whether or not they constitute a simplification

pair. Furthermore, if Kc has sufficient structure, say group structure,

then the same process would allow us to determine the extent of a

simplification, as well as to compare the complexity reduction effect

among simplification pairs.

We now proceed to discuss rather briefly some important classes of

complexity notions, both intuitive and quantifiable.

Cl) Conceptual Complexities:

Conceptual complexities have to do with the parsimony of system

specification. Two main components are involved: structural complexi-

ties and behavioral complexities,
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If, for example, the system is

or an informal stochastic DEVS (see

complexities reside in the size and

its behavioral complexities reflect

specified as a DEVS (see Ch. 1)

Ch. 2), then its structural

nature of its state space, while

the conceptual difficulty of the

rules that govern state transitions.

For probability spaces structural complexities are identified

with the size or detail level of the underlying sample space and

a-algebra. Deterministic system morphisms as well as stochastic ones

give rise to simplifications which are primarily structural complexity

reducing (see Chapters 1, 2 and 3).

For systems describable by networks of interacting components,

structural complexities can be derived from the topological complexity

of the associated graph (e.g. its size in terms of nodes and arcs).

In a queuing network, behavioral complexities involve the waiting

line discipline, rules of servicing and the method of customer

switching.

Conceptual complexities are probably the most important and

fundamental notions of complexity. While structural complexities are

relatively amenable to quantification, most behavioral complexities

remain intuitive notions.

C2) Analytical Complexities:

Analytical complexities bear a close relation to conceptual ones.

They have to do with analytical manipulations aimed at finding mathe-

matical solutions for the operating characteristics of a system. It

is obvious that analytical complexities are directly linked to

conceptual complexities, both structural and behavioral.
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In Queuing Theory we find that the analytical complexity (in

the intuitive sense) jumps tremendously when passing from single

queues to queuing networks. We also find that the equation systems

are analytically less complex for exponential servers as compared to

Erlangian ones, for FIFO queue discipline as compared to preemptive

resume, and for Bernulli switches as compared to non-Markovian ones.

If there are algorithmical solutions, then analytical complexities

may be quantified as ordinary computational complexities, i.e. as

measures of time and space required for finding such solutions.

C3) Simulation Complexities:

Simulation complexities are the analogue of computational complexi-

ties when the algorithm is a simulation run of the system, (mainly a

stochastic one). Simulations of a stochastic system are used to derive

some information, when a complete analytical solution is not within our

reach. Simulation complexities are inherently programming oriented and

fully quantifiable. They measure computer resources in terms of CPU

time and memory storage required to simulate a system under some

stopping rule. For stochastic systems, one simulates sample histories

(realizations)using random number generators. For such cases, the

resources required for a run become random functions of the sample

histories to be simulated. When these random functions are measurable,

one is typically interested in the respective expectations and variances,

as they project the average resources and the fluctuations about it,

to result from repeated simulation runs. Some examples of simulation

complexity measures of stochastic discrete event systems (specifically,

queuing networks) may be found in Sec. 5.4 of Ch. 5.
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In general, different complexity notions need not be consistent in

the sense that their behavior could involve opposing monotoneity trends.

For example, if an Erlangian queuing network admits of a reduction to 9

an exponential network, then this would decrease the behavioral and

8
analytical complexities. On the other hand, the structural complexity

would increase considerably, as we add more nodes and arcs. Similar

phenomena are pointed out in [Z5] in the domain of structured functions

(abstractionsof networks). 9
The choice of a complexity notion is up to the user, and it varies

from situation to situation. Therefore, a simplification process as
n

guided by complexity criteria is really in the eye of the beholder.
I

B.4 Examples

In this section we further exemplify instances of simplifications

and demonstrate how our formalism works.

Example B.4.1

For deterministic systems such as mathematical systems, iterative

specifications (see Appendix A) and DEVSS or DEVNS (see Ch. 1), the

set of “systemsIIis the corresponding set of state-Systems while

“aspects” are formalized as behavioral frames. The main vehicle for

simplifications over classes of such deterministic systems is the

morphism concept (see ibid.). A morphism (g,h,k) has inherent simpli-

fication properties of “complexity” reduction, and the “aspect preser-

vation” effect is manifested by the existence of a translation process

via h and k between the structure and behavior, respectively, of
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c:
:=

<-.
r-

the base and lumped models.
:1*

For a more detailed discussion of the .$,*,
<$*
Pr-

simplification effect of.morphisms, the reader is referred to Appendix PI”

P-

I’,r

A. Observe that in a hierarchy of morphisms, the more specialized
r=

the morphism, the smaller the simplification effect. As we specialize

h from a mere morphism to a homomorphism and an isomorphism, the struc-

tural modification of the morphic preimage to its morphic image is

reduced, the gradient of structural complexities declines, and we can

expect to preserve more behavioral frames.

Example B.4.2

Simplifications of stochastic systems such

(see Ch. 2) follow the basic pattern of Example

•1

as stochastic DEVSS

B.4.1, subject to some

modifications.

The set of “systems“ is composed of probability spaces. These

are usually coordinate probability spaces that represent informal

descriptions of stochastic systems. The “aspects” set consists of

behavioral frames formalized as stochastic processes (see Ch. 2).

Stochastic simplifications are identified with the existence of a

stochastic morphism H defined as a variant of the measure preserving

transformation concept (see Ch. 3). The simplification effect of

a stochastic morphism is analogous to its deterministic counterpart.

“Complexity” reduction and “preservation” are attained by lumping

sample points and coarsening the base model’s g-algebra in “ameasure

preserving manner. The reader is referred to Ch. 3 for more details.

a
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Example B.4.3

In this example, we exemplify how our proposed formalism works

in a queuing-theoretic context.

Our set of “systems” is the class of Jackson queuing networks

(described in Ch. 4) in their coordinate probability space represen-

tation (see Ch. 2).

The “aspects” set of a “system” is the set of all stochastic

processes over the associated”probability space. Define a “complexity”

notion c* as the size of the networks, say the sum of nodes and arcs.

The “preservation“ notion IT*of any “aspect” pair ($1,$2)~ ‘f’Ox ya is
12

defined as distribution equivalence of 41 and 42 (i.e. as the equality

= F of their families of finite dimensional distributions).
‘Yl $’2

Next we focus on “aspect” pairs (t~,y;) where $; is the total

service time sampled by an arbitrary customer, in the network Ui.

Let us formulate an informal simplification problem as follows:

informal SP: “characterize all A-simplifications over the class of

Jackson networks (a A-simplification of a queuing network removes

all arcs among the nodes, and therefore is a simplification relative

to c*), such that the total time service time sampled by an arbitrary

customer in the network is preserved in distribution.”

The formal version of SP runs as follows:

formal SP: “Characterize all A-simplifications (f3,A)over the class of

Jackson networks such that S((63L),c*,($~,t~),~*) = ‘true’.”

Notice that the “preservation of total service time” alluded to

in the informal SP really refers to an “aspect” pair (total service ,1
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c
r-

time of arbitrary customer in f3;
:-

total service time of arbitrary <,-
c,m
l.-

customer in A). Actually the former is an informal shorthand for ?T
,-
r~

the latter. This point is not altogether trivial. For example, if
R7

in 6 the waiting time distribution of arbitrary customer is the same

as the transit

c(a)’’<c”c(~),

simplification

time distribution of arbitrary customer in X such that

then our formalism would recognize B~A to be a valid

in the “aspect” pair (waiting time, transit time).

There is no intuitive reason why “aspect” pairs, whose components do not

play the same intuitive role, should not be regarded as being

“preserved” under some otherwise intuitive simplification.

The domain of SP is ~(SP) = ~ {(f3,A)}x{c*}x{(~~,~~)}x{T*}where

(f3,A)~r

r is the set of all A-simplifications over Jackson networks. ~“-

A solution of SP is based on Theorem 5.2.4 in Ch. 5.

Define ~,-,p= {’assertion’, ‘proof’, ‘algorithm’)where

1. ‘assertion’ = “a A-simplification (~,~), whose lumped model

is obtained according to Theorem 5.2.4, satisfies

S((@,A),c*,(~~,~~),m*) = ‘true’ iff

every node n in the base model B satisfies the condition

qnon = const.”

(The quantities qn and on are structural parameters of a

Jackson network, i.e. part of its description.)

2. ‘proof’ is given in Theorem 5.2.4.

3. ‘algorithm’ amounts simply to checking the condition

qnon = const. directly from the description of B, and verifying

whether it holds or not. This clearly is a finite decision

process that allows us to decide effectively the validity of ,

S for each simplification BwA in r.
❑
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Further examples of simplifications over the class of Jackson

networks may be found in Sections 5.1 - 5.3 of Chapter 5.



APPENDIX C

SOME STOCHASTIC PROCESSES BACKGROUND

C.O Introduction

This appendix reviews some basic facts pertaining to Markov

processes, birth-and-death equations and stochastic equilibrium.

Relevant material can be found in standard references such as [Cil]

(see Ch. 8), [Dl] (see Ch. VI) and [F2] (seeCh. X).

C.1 Markov Processes

If X and {Yo: 0 ~0} are random variables over a probability space

S = (Q,A,P) and E(lXl) < CO,then E(XlY6, 9GO) will

cond<t<onal expectation of X with respect to U({Ye:

Ch. I). If AeA, then P(AIY6, 6c@) will denote the

probability of A with respect to o({Ye: OcO}) (see

denote the

ee~})f (see [Dl],

eonditionaZ

ibid.). Conditional

probabilities are special cases of conditional expectations when

X = 1A is the indicator function of A.

In the sequel, Elwill denote a subset of the real line.

Definition C.1.l

An n-dimensional stochastic process Y =

space S = (f/,A,P)is called a Markov process

the equality

(A) P(YUC BIYe, oe(s,t]) = P(Yue BIYt)

‘the u-algebra generated by {Ye}ec~.

305

~y~ $)eoover a probability

if whenever s s t’< u,
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holds almost surely for every Borel set BeBn, where B* is the Borel

o-algebra on the n-dimensional Euclidean spacell?n.

An equivalent statement of (A),called the Markov property (see

[Dl] p. 81),asserts that if Y is a Markov process, then for every

random variable Z measurable on o({Ye: O 2 t}) with E(IZI) < ‘=,

(B) E(ZIY/ 0 s t) = E(ZIYt) almost surely.

In particular, if Z = 1A and l’eo({Y6: e s t}), the* almost surelY

(cf. [Cl] p. 136)

(c) p(~lr,ye,est) = P(AIYt)

where r above should be understood as Ir.

E
cl

I

We now exhibit a sufficient condition that guarantees a stochastic
m

Theorem C.1.l

Let Y = {Yo}eeo be an n-dimensional stochastic process over a

probability space S = (Q,A,P). Suppose that Y satisfies a stochastic

equation of the form

a) Yu = f(Y5,{Ztls<t~u) for any s < u

where {Zt}s<t<u is a set of random variables over S, such

that

b) O({zt.“ s < t s u}) is independent of U({Y6: 13s s})

and f(Y5,{Zt}s<t<u) is measurable.

Then Y is a Markov process.

process to be a Markov process.
B

I

m

E

I

I

I

I
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Proof
.“”

Seee.g. [S1], Ch. 3 pp. 73-75.
*T

o l--
rT

We remark in passing that the term “Markov jump process” is some-

times used, thus reflecting the fact that under mild regularity condi-

tions, the sample functions may be chosen to

surely (see [Dl] p. 246).

For a Markov process Y = {Ye}eeG with a

Definition C.1.l may be restated in terms of

as follows:

(J)) Pr(Y6 = vnlY6 = vi, 1 <i s-n-l) =
n i

for any indices 131< 02 <...< On_l

be step functions almost

denumerable state space,

“ordinary” probabilities

Pr(Y6 = vn]Ye =
n n-1

<e and states
n

vi, 1 <i sn, and provided Pr(Y6 = vi, 1 si Sri-l)
i

The right hand side of (D) is called a (Markov) transition function

and denoted pv (en-l,en). To simplify matters we assume the
n-lvn

transition functions to be always defined.

We now restrict the discussion to Markov processes Y = {Ye}eeo

with a denumerable state space R(Y), where @ = [O,CO) and Y has

stationary transition probabilities (i.e. the transition functions

P (e1,e2) depend only on vl,v2 and t = e2-el). In this case, the
‘1V2

latter reduce to p (t), and the transition mat~ix consisting of
‘1V2

transition functions becomes P(t) ~ [p (t)]. In particular, P(t)
‘1V2

satisfies the Chapman-Kolmogorov equations.

(E) p(s + t) = P(s)P(t), Vs,teo .

If one assumes P(t)t~+I (identitymatrix), then fi(())exists as a
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right derivative (in t), but may have infinite components (see [Cl]

p. 126). However, under certain regularity conditions (finitenessof

fivV(0),vE R(y)), P(t) is guaranteed to have continuous derivatives

everywhere (see [Cl] p. 130).

In this case, the Kolmogorov fozwxzrd and backuard equations can

be derived from (E) by differentiating (E) with respect to s and t

respectively and setting each variable to O (see [Dl] p. 240).

With dots denoting derivatives in t, we obtain respectively

(F.1) b(t) = P(t)G subject to P(0) = I

(F.2) F(t) = GP(t) subject to P(0) = I

where G ~ F(O) is called the infinitesimal generator matrix

of Y (see [F2] p. 456).

Moreover,
A

the boundedness of the -gvv = Cv, VCR(Y), guarantees (see

[Fl] p. 475) that both (F.1) and (F.2) have aminimal solution P(t)

which is honest (i.e. its rows are probability vectors). The quanti-

ties c~ are extremely important,as they hold the key to existence and

uniqueness of an honest transition matrix for a Markov process. Each Cv

is interpreted as:the rate of transition from state v, and by station-

arity of the transition probabilities, this rate does not depend on t.

If the Cv are unbounded, the minimal solution (which always exists) may

not be honest, and

infinite number of

case, the solution

the Markov process

the defect is interpreted as probabilities due to

jumps in finite intervals (see [F2] p. 329). In this

for P(t) is not unique. However, with bounded.cv,

Y is guaranteed to be conservative, i.e. to have

almost surely a finite number

versa. In this case, one can

of jumps in each finite interval, and vice

show by direct calculation that, say the
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:=
c’-?

forward equation (F.1),
r-

is equivalent to the system of integral equations :-
<.-
<0

(see [F2] p. 484) B-
*l-

-cAt t

z~
-Cv(t-x) $-

(G) p~v(t) = 6Ave + p~v(x)curuve dx
i=’l-
tz

@( Y).

X,VGR(Y).

Here, 6AV is Kronecker’s delta and each r is the conditional probabil-
pv’

ity that a jump will take place from state P to statb “v,given that

a jump has taken place from state P.

Furthermore, differentiating (G) yields

It is

wise limit

(H.1)

(H.2)

{

-CA’ ifa=v

FAV(0) =

carAv‘
ifa+v

known that the minimal solution may be obtained as a point-

‘n)(t)}rn_odefined recursively byof the sequence {P
n-

(0) : ~ ;c~t
P~v (t) ~v

‘n+l)(t) ~ d~ve-c~t+ ~ ~,yl f
(n) -Cv(t-x)

PAV PAP (x)curvve dx

o

(see [F2] p. 485 for a derivation in the Laplace-Stieltjes

transform domain).

The treatment for the backward equations is analogous, except

that the backward equations might have solutions that do not satisfy

the forward equation (see [Fl] p. 478).
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C.2 Absolute Probabilities of Markov Processes

Although the development of Markov Processes is traditionally

carried out via their transition structure, in applications one is

mainly interested in the trajectories of the state absolute probabili-

ties.

Formally, we define

Definition C.2.1

Let Y = {Yo}6e@ be a stochastic process with a denumerable state

space R(Y). The probability vecto~ y(e) of Ye is a vector whose v-th

coordinate, v eR(Y),is given by

yv(e) ~ Pr(Ye= v).

The probability vector y(0) is called the initial condition of Y.

The function y(e) (in 6) is called the p~obabiZity tr~”ectory of Y

and yv(e) is called the probability trajectory of state v.

The relation between the transition structure given by P(t) and

the probability trajectory y(t) is such that

the latter up to an initial condition y(0).

(A) y(t) = y(0)P(t).

the former determines

In other words .

If P(t) is everywhere differentiable in t, then

o

(B) ;(t) = y(0)fi(t)

Thus, premultiplication by y(0) of the Kolmogorov forward equation

(F.1) in Sec. C.1 gives us i
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c=
:2

D

<’T
r-

(C) ;(t) = y(t)G
:W
<!?7
<6
W..

I

which we call the forward absolute probability equations. W-
*-
r~

,. The backward equations are similarly obtained by postmultiplying (F.2)
r%

1 in Sec. C.1 by the transpose of y(0).

We now give conditions under which Y has almost surely finite b

I number of jumps in each finite interval. In this case, equations (C)

I
above and (F.1) in Sec. C.1 are equivalent in the sense of existence

and uniqueness of respective solutions P(t) and y(t) for them.

Theorem C.2.1

I Let Y = {Y(t)}t20 be a Markov process with stationary transi-

9
tion probabilities and almost surely finite number of jumps in every

finite interval. Let y(0) be an initial condition for Y, and G its

i

infinitesimal generator matrix. Consider the equation

(1) h(t) = u(t)G subject to u(0) = y(0)

B Then (1) has a unique probability solution u(t) which is precisely the

I
probability trajectory y(t) of Y. Moreover, y(t) is obtained as a

minimal solution of (1) and each coordinate yv(t) in y(t) satisfies the

integral equation

+
-c t

(2) yv(t) = yv(0)e ~ +
-Cv(t-x)

z ~’p (x)cprvve dx
PGR(y) o

VER(Y).

1 Proof

See [BM1], Lemma 2.1.

B

.
u

9
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An important class of Markov processes with denumerable state

space is obtained, when state transitions are restricted to adjacent

states in the sense of

Definition C.2.2

i-th coordinate. Then two

either of the following holds:

Let Y = {Yt}t>O be an m-dimensional Markov process with

R(Y) = {(nl,...,nm): ni is an integer}. Let ei, lsi Qmbethe

m-dimensional unit vector with 1 in the

states v,IJE R(Y) are called ad~acent if

a) v =p + ei for some 1 <i <m

b) v=~-e i forsomel~i~m

c) v= P + ei - e. for some l<i,j Sm
J

Thus, adjacent states are “neighboring” lattice points. We now

define formally the restrictions on state transitions by

Definition C.2.3

Let Y = {Yt}t>O be as in

m-dimensional birth-and-death

adjacent states, we have

a) fivv(t,t)= fiuv(t,t)

o

definition C.2.2. We say that Y is an

process, if whenever P and v are not
s’

J

= o, t ~ O (derivativewith repsect to R

the second argument)

In this case, Equation (C) will be referred to as the birth-and-death 9
equation of Y.

•1
m

M
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9

<n

Observe that for m = 1,
P-

Definition C.2.3 properly reduces to the ;-
<,0
<m

ordinary definition

e.g. [Fl] p. 454).

of (l-dimensional)birth-and-death processes (see
,,-
,,f-

C.3 Equilibrium Concepts

When dealing with stochastic processes, one is often interested in

its equilibrium properties. Intuitively, an equilibrium situation may

be attained asymptotically - when the process has

“long time”, or immediately - if started with the

condition. Formally, we define

been evolving for a

appropriate initial

Definition C.3.1

Let Y = {Yo}oeo be a stochastic process with a denumberable

state space R(Y). Let y(e) be a probability vector of Ye.

Then

a) We say that Y is in equilibrium (or in steady state) under

y“, if y(0) is time invariant in the sense of

y(o) = y“ + y(e) =Y”, vf3Go.

In this case, y“ is called an equilibrhm vecto~ of Y.

b) If y“ is an equilibrium vector of Y such that for any choice

of an initial condition y(0), we have

t4@Y0 (pOintwiseconvergence),y(t)————+

then y“ is called a long run vector of Y. El

Although, in general, Y may have

can have at most one long run vector.

several equilibrium vectors, it

In this case, the long run vector
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becomes the unique equilibrium vector of Y.

Statistical equilibrium is a situation whereby the probabilistic

behavior of Y (in terms of probability trajectories) does not fluctuate

in time. If the process evolves asymptotically into equilibrium, then

in general, the equilibrium situation evolved into depends on the initial

condition. However, the existence of a long run vector guarantees Y

to evolve asymptotically into a unique equilibrium situation, regardless

of initial conditions.

We point out in passing that an equilibrium vector of a Markov

process is a long run vector, whenever the recurrent part of the

state space is irreducible (see [Cil] p. 264).

For Markov processes with denumerable state space, we have the

following necessary and sufficient condition for a probability vector

to be an equilibrium vector.

Theorem C.3.1

Let Y =’{Yt}t>O be a Markov process whose forward absolute

probability equation is

(1) ~(t) = y(t)G .

Then y“ is an equilibrium vector of Y iff ‘y”is a probability vector

satisfying

(2) O = yOG.

Proof

By Definition C.3.1, y“ is an equilibrium vector of Y iff

y“ satisfies (1) such that ye(t) ~ y“ for all t z O.

But ye(t) = y“ iff yO(t)G = ~“(t) ~ O, i.e. iff (2) holds.
•1
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